Автор работы: Пользователь скрыл имя, 19 Мая 2011 в 19:03, реферат
В процессе выплавки стали в дуговых печах металл содержит некоторое количество кислорода. Содержание его, как было показано выше, зависит от содержания в металле углерода.
Раскисляющее действие марганца проявляется и при совместном с другими раскислителями раскислении спокойных сталей. Как будет показано, это объясняется более легким при определенных условиях образованием жидких зародышей продуктов раскисления, содержащих окись марганца.
Кремний применяется в качестве раскислителя при производстве почти всех спокойных сталей, что обусловлено его высокой раскислительной способностью и благотворным влиянием на характер неметаллических включений.
Исследование
раскислительной способности
Активность твердого кремнезема (tпл = 1710° С) равна единице, и поэтому в уравнении константы не учитывается.
Температурная
зависимость константы
Как видно из таблицы, кремний вызывает понижение коэффициента активности кислорода. Одновременно коэффициент активности кремния изменяется с изменением его концентрации и концентрации кислорода. Однако оказалось, что удовлетворительное постоянство сохраняет произведение массовых концентраций, выражаемое уравнением (2) (без учета коэффициентов активности):
Это объясняется тем, что увеличение коэффициента активности кремния с повышением концентрации в определенной степени компенсируется одновременным уменьшением коэффициента активности кислорода. Следовательно, уравнение (2) пригодно для оценки содержания кислорода в металле, равновесного с заданным содержанием кремния.
При температуре 1600° С Ksi = 2,8 X 10-5. Отсюда содержания кислорода, равновесные с данным содержанием кремния, равны:
[Si, %] | 0,01 | 0,1 | 0,2 | 0,3 |
[О, %] | 0,0530 | 0,0170 | 0,0110 | 0,0095 |
Сопоставление этих значений с данными, показывает, что в окислительный период плавки содержание кислорода в стали может быть выше равновесного с кремнием. Например, при содержании углерода 0,1 и 0,2% содержание кислорода в стали равно соответственно 0,04 и 0,02%. Следовательно, при таком содержании углерода кремний может раскислять металл при концентрации его 0,1-0,2% и более.
При
определении константы
С учетом величин активностей продуктов раскисления из уравнения (3) при 1600° С получено:
При содержании кремния около 0,3% (обычном при раскислении стали) по уравнению (2) и (4) получаются одинаковые равновесные концентрации кислорода. Следовательно, при таком содержании кремния термодинамически равновероятно образование SiO2 и FeO-SiO2. При малых концентрациях кремния в условиях равновесия более вероятно образование FeO-SiO2, чему соответствует и меньшее содержание кислорода в стали. При содержании кремния в стали более 0,3% меньшая равновесная концентрация кислорода обеспечивается при образовании твердого кремнезема и более вероятно протекание реакции раскисления кремнием до SiO2.
Кремний при обычных его концентрациях в металле (0,17—0,37%) в качестве раскислителя понижает содержание кислорода в стали. Однако при раскислении стали одним кремнием не всегда удается получить качественный слиток спокойной стали. В процессе кристаллизации вследствие ликвации кислорода и углерода в стали возможно развитие реакции окисления углерода с образованием пузырьков окиси углерода, вызывающих возникновение пористости металла и даже рослости слитков.
Алюминий является очень сильным раскислителем, его применяют при производстве спокойных сталей. Присадки алюминия в металл позволяют полностью успокоить сталь и избежать возникновения пористости слитков и отливок вследствие окисления углерода и выделения пузырьков окиси углерода.
Раскислительная способность алюминия явилась предметом изучения многими исследователями. Они встретились с рядом трудностей, обусловленных главным образом очень малыми равновесными концентрациями алюминия и кислорода, меньшими, чем допускаемые ошибки анализа. Однако тщательно проведенные исследования ряда авторов позволили достаточно надежно определить термодинамические данные реакции раскисления алюминием.
Можно, например, отметить результаты обстоятельного исследования Гоксена и Чипмана. Чистое железо они расплавляли в алундовом тигле из чистой окиси алюминия в индукционной печи при непрерывном пропускании газовой смеси водяного пара и водорода контролируемого состава. Таким образом, указанные авторы применили обычную методику для определения термодинамических данных реакций взаимодействия растворенного в металле раскислителя с водяным паром или, наоборот, продукта раскисления Al2O3 с водородом. Комбинируя полученные данные с данными реакции взаимодействия водорода с растворенным в металле кислородом получили константу равновесия реакции раскисления алюминием:
Исследования показали, что величина произведения /аг/о близка к единице и приближенное значение константы равновесия можно получить, применяя вместо активностей алюминия и кислорода их концентрации. При этом
Это
уравнение позволяет рассчитать
раскислительную способность
Описанные результаты исследований относятся к случаю образования глинозема. Однако образование Al2O3 в процессе раскисления алюминием происходит лишь при избытке алюминия в зоне протекания реакции. Как показало изучение продуктов раскисления алюминием, при избытке кислорода может происходить образование герцинита (FeO X Al2O3) или расплава FeO + Al2O3 переменного состава.
Образование герцинита может быть описано реакцией:
Совместное раскисление кремнием, марганцем и алюминием.
Обычно сталь раскисляют не одним из рассмотренных выше раскислителей (Mn, Si, Al), а всеми тремя.
Это обеспечивает более полное раскисление и, главное, образование продуктов раскисления, более полно удаляющихся из стали и в меньшей степени ухудшающих ее свойства.
Марганец обладает слабой раскислительной способностью и при содержаниях кислорода, получаемых при введении в сталь кремния и алюминия, сам по себе не может раскислять металл. Однако некоторые исследователи установили влияние марганца на раскислительную способность кремния и алюминия. В качестве примера в табл. 9 приведены равновесные с кремнием концентрации кислорода в металле без марганца и при содержании в нем 04% Mn. Как видно, марганец повышает раскислительную способность кремния.
В
отдельных исследованиях
Влияние марганца на раскислительную способность кремния и алюминия можно объяснить образованием сложных продуктов раскисления, содержащих закись марганца. При этом не только уменьшается активность в них окислов раскислителя, но и увеличивается количество связываемого кислорода.
Таблица 1. Влияние марганца на раскислительную способность кремния |
Исследование раскислительной
Эти продукты раскисления выделяются в виде окисной фазы, образующей отдельные неметаллические включения. Возникновение новой фазы в гомогенной среде связано с образованием новой поверхности раздела и требует преодоления энергии межфазиого натяжения. Поэтому образование зародышей критического радиуса, т. е. таких зародышей, которые могут затем расти, часто очень затруднено и невозможно даже в условиях, когда концентрации компонентов превышают равновесные.
При большом межфазном натяжении зародыши новой фазы могут образовываться лишь при больших концентрационных пересыщениях по сравнению с условиями равновесия. Это может вызывать образование таких продуктов раскисления, которые в условиях равновесия не самые устойчивые.
Как отмечалось, межфазное натяжение шлака на границе с металлом увеличивается с повышением содержания Al2O3 и понижением содержания FeO. Это же относится к продуктам раскисления, образующим по существу шлаковые включения, которые, однако, могут образовываться и в твердом состоянии, когда межфазное натяжение очень возрастает.
Из-за
необходимости обеспечивать меньшие
пересыщения вероятность
Условия
образования продуктов
После
выравнивания температуры раскислитель
опускали на поверхность железа; вследствие
небольшого зазора между стенками пробирки
и прутком раскислителя возникали капиллярные
силы, удерживавшие его от погружения.
Далее, по истечении определенной выдержки
в контакте железа и раскислителя печь
отключали и продували холодным аргоном
для ускорения затвердевания. Пробирки
при этом извлекали из металла.
В результате встречной диффузии кислорода, а также вследствие высокой исходной концентрации и значительно более интенсивной диффузии раскислителя получили набор включений, образовавшихся при различных концентрациях раскислителя и кислорода.
В железе, раскисленном, например, алюминием, у поверхности контакта с раскислителем образовалась полоса включений, состоявшая из нескольких слоев. Верхние слои, расположенные ближе к раскислителю, представляли собой кристаллы корунда (а-Al2O3) в виде зерен, дендритов и идиоморфных (характерных для данного минерала) включений (см. рисунок). В нижнем слое раскисленного металла располагались лишь глобулярные включения FeO-А12O3, которые, судя по форме, были в расплаве в жидком состоянии.