Автор работы: Пользователь скрыл имя, 29 Мая 2013 в 14:49, курсовая работа
Компрессорные станции (КС) являются одним из основных объектов газотранспортных систем. На них приходится порядка 25% всех капиталовложений в системы транспорта газа и 60% всех эксплуатационных расходов по этим системам.
Надежность и экономичность транспорта газа в значительной мере определяются надежностью и экономичностью КС. Поэтому проектирование и эксплуатация компрессорных станций должны осуществляться с учетом современных достижений науки и техники и перспектив развития районов расположения станций.
Оглавление
Аннотация 3
Abstract 3
Введение 5
I. Общая информация 6
1.Назначение и описание компрессорной станции 6
2. Классификация компрессорных станций 8
3. Классификация компрессоров 9
3.1 Поршневые компрессоры 10
3.2 Ротационные компрессоры 11
3.3 Турбокомпрессоры 12
4. Технологическая схема компрессорной станции 14
II. Расчет компрессорной станции: 18
Выбор типа ГПА и расчет режима работы КС 25
III. Методы очистки газа, выбор пылеуловителя. 33
Технологический расчет циклонного пылеуловителя 33
IV. Охлаждение газа: 37
Аппарат воздушного охлаждения газа 37
V. Система импульсного газа 48
VI. Система топливного и пускового газа на станции 50
VII. Система маслоснабжения КС и ГПА, маслоочистительные машины и аппараты воздушного охлаждения масла 52
Заключение 59
Список литературы: 60
Таблица 6. Размеры обратного клапана
Рис. 18. Обратный клапан (затвор) полнопроходный с демпфирующим устройством
Вся арматура подобрана по данным ОАО «ПТПА (г. Пенза).
Импульсным называется газ, отбираемый из технологических трубопроводов обвязки КС для использования в пневмогидравлических системах приводов запорной арматуры: пневмоприводных кранов технологического, топливного и пускового газов, для подачи газа к контрольно-измерительным и регулирующим приборам. В пневмогидравлической системе привода крана производится преобразование потенциальной энергии сжатого газа в механическую работу по перемещению запорного шарового узла.
Принципиальная схема импульсного газа приведена на рисунке 14. Существуют три точки отбора импульсного газа из технологических трубопроводов КС (рис. 15): отбор до и после крана № 20; отбор из выходного трубопровода КС до узла охлаждения и отбор из входного трубопровода КС после узла очистки.
Рис. 19. Принципиальная схема импульсного газа
Далее трубопровод импульсного газа объединяется в общий коллектор и поступает на узел подготовки импульсного газа (УПИГ), где происходит его очистка и осушка.
В состав УПИГ входит следующее оборудование: фильтр-сепараторы, адсорберы, огневой подогреватель, газовый ресивер, запорная арматура, контрольно-измерительные приборы, трубопроводы и гибкие резиновые шланги.
Поглощение осуществляется адсорбентом, находящимся в полости адсорберов. В качестве адсорбента используются селикагель или циолит. Степень очистки и осушки импульсного газа должна исключать заедание и обмерзание исполнительных органов при низких температурах наружного воздуха.
Рис. 20. Принципиальная схема отбора и разводки импульсного газа
Как правило, из двух адсорберов в рабочем режиме поглощения влаги находится один. Другой адсорбер находится в режиме восстановления адсорбента. Восстановление осуществляется путем пропускания части подогретого до высокой температуры газа (около 300 °С) через увлажнённый адсорберт. Дело в том, что при достижении предельной влажности, селикагель теряет способность дальнейшего поглощения влаги и для возобновления его адсорбционных свойств через него пропускают горячий теплоноситель. Осушку селикагеля проводят один раз в 2-3 месяца. Для подогрева газа используется огневой подогреватель. Цикл регенерации селикагеля длится примерно 4-6 ч, цикл охлаждения 2-4 ч.
При эксплуатации УПИГ с
помощью контрольно-
После УПИГ газ поступает ко всем общестанционным кранам на узел подключения, режимным и агрегатным кранам, а также на низкую сторону к кранам топливного и пускового газа.
Система топливного и пускового газа предназначена для очистки, осушки и поддержания требуемого давления и расхода перед подачей его в камеру сгорания и на пусковое устройство (турбодетандер).
Газ для этих систем, аналогично, как и для системы импульсного газа, отбирается из различных точек технологических коммуникаций КС: на узле подключения до и после крана № 20, из выходного коллектора пылеуловителей и выходного шлейфа компрессорного цеха - перед аппаратами воздушного охлаждения газа.
Система топливного и
пускового газа имеют блочное
исполнение и включают в себя следующее
оборудование (рис. 16): циклонный сепаратор,
или блок очистки, фильтр-сепаратор,
или блок осушки, подогреватели, блок
редуцирования пускового и
Рис. 21. Принципиальная схема системы топливного и пускового газа:
ТГ - топливный газ; ПГ - пусковой газ; ВЗК - воздухозаборная камера; ТД - турбодетандер; ОК - осевой компрессор; КС - камера сгорания; ТВД - турбина высокого давления; ТНД - турбина низкого давления; Н - нагнетатель; РЕГ - регенератор
Работа системы осуществляется следующим образом: газ, отбираемый из технологических коммуникаций КС, поступает на блок очистки или газосепаратор 1, где происходит его очистка от механических примесей. Далее газ поступает в фильтр-сепаратор 2, где происходит его более глубокая очистка от механических примесей и влаги. Затем газ поступает в подогреватель 3 типа ПТПГ-30, где подогревается до температуры 45-50 °С. Огневой подогреватель представляет собой теплообменник, в котором трубный пучок газа высокого давления погружен в раствор диэтиленгликоля. Диэтиленгликоль подогревается за счет использования камеры сгорания этого устройства. Подогрев газа осуществляется с целью обеспечения устойчивой работы блоков редуцирования и недопущения его промерзания, что может нарушить устойчивую работу системы регулирования ГТУ.
Перед блоком редуцирования газ разделяется на два потока: один направляется на блок редуцирования топливного газа 4, другой на блок редуцирования пускового газа 5.
Топливный газ редуцируется до давления 0,6-2,5 МПа в зависимости от давления воздуха за осевым компрессором ГТУ. После блока редуцирования топливный газ поступает в сепаратор 6, где происходит его повторная очистка от выделившейся при редуцировании влаги, и затем в топливный коллектор. В камеру сгорания топливный газ поступает через кран № 12, стопорный (СК) и регулирующий (РК) клапаны. Краны № 14 и 15 используются для запальной и дежурной горелки в период пуска агрегата.
Пусковой газ, пройдя систему редуцирования, снижает свое давление до 1,0-1,5 МПа и поступает через краны № 11 и 13 на вход в турбодетандер, где расширяясь до атмосферного давления, совершает полезную работу, идущую на раскрутку осевого компрессора и турбины высокого давления.
Система маслоснабжения компрессорной станции включает в себя две маслосистемы: общецеховую и агрегатную.
Общецеховая маслосистема (рис. 17), предназначенная для приема, хранения и предварительной очистки масла перед подачей его в расходную емкость цеха. Эта система включает в себя: склад ГСМ 1 и помещение маслорегенерации 3. На складе имеются в наличии емкости 2 для чистого и отработанного масла. Объем емкостей для чистого масла подбирается исходя из обеспечения работы агрегатов сроком не менее 3 месяцев. В помещении склада ГСМ устанавливается емкость отрегенерированного масла и емкость отработанного масла, установка для очистки масла типа ПСМ-3000-1, насосы для подачи масла к потребителям, а также система маслопроводов с арматурой.
Рис. 22. Общецеховая маслосистема:
1 - склад ГСМ; 2 - емкости масляные; 3 - помещение маслорегенерации; 4 - газоперекачивающие агрегаты; 5 - маслобак ГПА; 6 - маслопроводы; 7 - аварийная емкость
После подготовки масла на складе ГСМ и проверки его качества, подготовленное масло поступает в расходную емкость. Объем расходной емкости выбирается равным объему маслосистемы ГПА, плюс 20 % для подпитки работающих агрегатов. Эта расходная емкость, оборудованная замерной линейкой, используется для заправки агрегатов маслом. Для газотурбинных ГПА применяется масло марки ТП-22С или ТП-22Б. Для организации движения масла между складом ГСМ и расходной емкостью, а также для подачи к ГПА чистого масла и откачки из него отработанного масла их соединяют с помощью маслопроводов. Эта система должна обеспечивать следующие возможности в подаче масла:
- подачу чистого масла
из расходного маслобака в
маслобак ГПА, при этом линия
чистого масла не должна иметь
возможность смешиваться с отра
- подачу отработанного масла из ГПА только в емкость отработанного масла;
- аварийный слив и перелив масла из маслобака ГПА в аварийную емкость. Для аварийного слива необходимо использовать электроприводные задвижки, включаемые в работу в автоматическом режиме, например, при пожаре.
На рис. 18 приведена схема маслосистемы для агрегата ГТК-25И фирмы "Нуово-Пиньоне", которая включает в себя: смазочную систему, систему управления и гидравлическую систему, обеспечивающую подачу масла высокого давления на привод стопорного и регулирующего клапанов топливного газа, узла управления поворотными сопловыми лопатками ТНД, а также подачу масла в систему уплотнения центробежного нагнетателя.
Рис. 23. Смазочная система ГТК - 25И:
1 - маслобак; 2 - охладитель масла; 3 - фильтры масляные; 4 - фильтры масляные муфт; 5 - регулятор давления; 6 - маслонасосы; 7 - предохранительный клапан; 8 - подогреватель; 9 - маслопроводы
Смазочная система ГПА включает в себя три масляных насоса 6 (главный, вспомогательный и аварийный), маслобак 1 с напорными и сливными трубопроводами 9, предохранительный клапан 7, охладитель масла 2, два основных фильтра со сменными фильтрующими элементами 3, электрический подогреватель 8, датчики давления, температуры и указателей уровня масла.
Работа смазочной системы
осуществляется следующим образом:
после включения
Очищенное масло после фильтров поступает на регуляторы давления 5, которые обеспечивают подачу масла на подшипники и соединительные муфты "турбина-редуктор" и "турбина-нагнетатель" с необходимым давлением.
Из подшипников масло
по сливным трубопроводам
Количество масла в
баке контролируется при помощи специального
уровнемера, соединенного с микровыключателем
датчика минимального и максимального
уровня. Сигналы датчика введены
в предупредительную сигнализац
Работа системы уплотнения
центробежного нагнетателя
Масло к винтовым насосам уплотнения поступает из системы маслоснабжения ГПА. В систему уплотнения нагнетателя входит (рис. 19): регулятор перепада давления 3, обеспечивающий постоянный перепад давления масла над давлением перекачиваемого газа, аккумулятор 2, обеспечивающий подачу масла в уплотнения в случае прекращения его подачи от насосов (при исчезновении напряжения), поплавковые камеры 4, служащие для сбора масла, прошедшего через уплотнения и газоотделитель 5, предназначенный для отбора газа, растворенного в масле.
При работе ГПА масло высокого давления после насосов 8 по маслопроводу поступает на вход регулятора перепада давления 3. После регулятора 3 оно поступает в аккумулятор 2 и далее по двум маслопроводам 7 к уплотнениям 6 центробежного нагнетателя 1. После уплотнений масло сливается в поплавковые камеры 4, по мере заполнения которых оно перетекает в газоотделитель 5, где происходит выделение газа, растворенного в масле. Очищенное от газа масло возвращается в основной маслобак, а выделившийся из масла газ через свечу отводится в атмосферу.
Рис. 24. Система уплотнения центробежного нагнетателя:
1 - центробежный нагнетатель; 2 - аккумулятор; 3 - регулятор перепада давления;
4 - поплавковая камера; 5 - газоотделитель; 6 - масляное уплотнение (торцевое);
7 - маслопровод высокого давления; 8 - винтовые насосы
Одним из важнейших элементов системы уплотнений являются непосредственно масляные уплотнения. Различают в основном два типа уплотнений: щелевые и торцевые. О качестве работы системы уплотнений судят по интенсивности поступления масла в поплавковую камеру. Быстрое ее заполнение маслом при закрытом сливе свидетельствует о повышенном расходе масла через уплотнения.
На компрессорных станциях для очистки турбинного масла применяются маслоочистительные машины типов ПСМ-1-3000, CM-1-3000, НСМ-2, НСМ-3, CM-1,5, которые могут работать в зависимости от степени загрязнения масла как по схеме очистки, так и по схеме осветления регенерируемого масла. Принципиальная схема маслоочистительной машины типа ПСМ-1-3000 приведена на рисунке 20. По этой схеме загрязненное масло, пройдя фильтр грубой очистки 8, шестеренчатым насосом 7 через электроподогреватель 5 подается в очистительный вращающийся барабан 9, где из масла происходит выделение механических примесей и воды. В нижней части барабана масло под действием центробежных сил поступает на разделительные тарелки 10. Вода, имеющая большую плотность, чем масло, центробежной силой отбрасывается на периферию и под действием непрерывно поступающего в барабан масла попадает в водяную полость маслосборника 3. Очищенное масло по кольцевому каналу сливается в вакуум-бак 4. Шестеренчатым насосом 7 масло из вакуум-бака подается на фильтр 1, откуда оно выходит уже полностью очищенным. При работе маслоочистительной машины механические примеси оседают на стенках барабана 9.