Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 02:48, реферат
Погрузка сыпучих строительных материалов, монолитных строительных деталей и изделий является одним из наиболее трудоемким процессов в строительстве. Любая отрасль строительства тесно связана с добычей, переработкой и использованием сыпучих и кусковых каменных материалов – различных грунтов, песка, гравия, щебня и их смесей добавками и вяжущими материалами.
Технология вдавливания свай следующая. Трактор с мачтой устанавливают над местом погружения свай и с помощью малой лебедки опускают на землю опорную плиту. После этого на опорную плиту устанавливают пригрузочный трактор. Предварительно с помощью малой лебедки сваю помещают в проем мачты трактора, находящегося на грунте. Усилия от большой лебедки передаются на наголовник, и он начинает перемещаться по направляющим, обеспечивая тем самым вдавливание сваи.
Установка развивает усилие вдавливания до 350 кН и может погрузить за смену 13... 15 свай длиной до 6 м. Точность установки сваи обеспечивается устройством «лидирующих» направляющих скважин. Такие скважины устраивают буровыми станками на глубину, меньшую, чем проектная отметка погружаемых свай, на 0,5...1 м. Достоинства данного метода — простота монтажа установки на строительной площадке, недостаток — низкая производительность из-за малой маневренности.
Более эффективным является метод динамического (вибрационного) вдавливания свай с помощью вибровдавливающих установок, когда свая погружается от комбинированных действий вибрации и статической пригрузки. Вибровдавливающая установка () состоит из двух рам. На задней раме находятся электрогенератор, работающий от тракторного двигателя, и двухбарабанная лебедка, на передней раме направляющая стрела с вибропогружателем и блочки, через которые проходит к вибропогружателю вдавливающий канат от лебедки. Когда вибровдавливающая установка займет - рабочее положение (крюк подвески вибропогружателя должен находиться над местом погружения сваи), вибропогружатель опускают вниз, наголовником соединяют со сваей и поднимают в верхнее положение, а сваю устанавливают на место ее забивки.
Досле включения вибропогружателя и лебедки установки свая погружается за счет собственной массы, массы вибропогружателя и части массы трактора, передаваемой вдавливающим канатом через вибропогружатель на сваю. Одновременно на сваю действует вибрация, создаваемая низкочастотным погружателем с подрессоренной плитой.
Метод вдавливания не требует устройства каких-либо путей для рабочих передвижек, исключает разрушение свай и особенно эффективен при погружении свай длиной до 6 м.
Погружение свай методом завинчивания () применяют главным образом при устройстве фундаментов под мачты линий электропередачи, радиосвязи и других сооружений, где в достаточной мере могут быть использованы несущая способность винтовых свай и их сопротивление выдергиванию. При этом завинчивают стальные и железобетонные сваи со стальными наконечниками с помощью установок, смонтированных на базе автомобилей или автомобильных тягачей. Эти установки имеют рабочий орган, четыре гидравлических аутриггера, привод вращения и наклона рабочего органа, гидросистему, пульт управления и вспомогательное оборудование.
Рабочие операции при погружении
сваи методом завинчивания аналогичны
операциям, выполняемым при погружении
свай методом забивки или
Для погружения свай с применением подмыва грунт разрыхляют и частично вымывают струями воды, вытекающими под давлением из нескольких трубок диаметром 38...62 мм, укрепленных на свае. При этом сопротивление грунта у острия сваи снижается, а поднимающаяся вдоль ствола вода размывает грунт, уменьшая тем самым трение по боковым поверхностям сваи. Расположение подмывных трубок может быть боковым, когда две или четыре подмывные трубки с наконечниками находятся по бокам сваи, и центральным, когда один одноструйный или многоструйный наконечник размещен по центру погружаемой сваи.
При боковом подмыве трубки могут быть повреждены, а при перерывах в работе— заполняться грунтом. При неравномерном размыве сваи могут отклоняться от проектного положения. При боковом подмыве (по сравнению с центральным) создаются более благоприятные, условия для уменьшения сил трения по боковой поверхности свай. При боковом расположении подмывные трубки крепит таким образом, чтобы наконечники находились у свай на 30...40 см выше острия, у оболочек —на 150...200 см выше ножа.
Для подмыва грунта подают
воду в трубки под давлением не
менее 0,5 МПа. При подмыве нарушается
сцепление между частицами
С использованием электроосмоса погружают сваи в глинистые грунты. В этом случае после кратковременного действия постоянного тока вокруг забиваемой сваи, подключенной в сеть в качестве катода, влажность грунта возрастает и в нем возникают водона-сыщенные зоны. Погружение сваи-катода облегчается, поскольку уменьшаются лобовое и боковое сопротивления грунта. У ранее забитой сваи, служащей анодом, образуется зона грунта со сниженной влажностью. После прекращения подачи тока происходит восстановление первоначального состояния грунтовых вод и несущая способность свай, являющихся катодами, возрастает.
Дополнительные операции при погружении железобетонных свай с использованием электроосмоса связаны с оснащением свай полосами стали — электродами, площадь которых занимает 20...50% боковой поверхности свай. Эта операция отпадает при погружении металлических свай методом завинчивания.
Пневматические ручные машины
Широкое распространение при производстве строительно-монтажных, сантехнических и отделочных работ получили пневматические ручные машины, источником энергии которых служит атмосферный воздух, сжатый до 5—7 кгс/см2 (0,5—0,7 МПа) в компрессорах. По сравнению с электрическими пневматические машины легче, портативнее, нечувствительны к перегрузкам, обладают большей удельной мощностью, более надежны и безопасны в эксплуатации. Однако пневматические машины имеют низкий КПД (8—16%) и требуют наличия компрессорной установки. Наиболее эффективно пиевмомашины используются при выполнении работ значительных объемов.
По принципу действия различают, вращательные, ударные и ударно-вращательные пиевмомашины.
К вращательным пневмомашинам относятся сверлильные, шлифовальные, резьбонарезные пиевмомашины, пневмоножницы и пневмогайковерты, кинематика, назначение и принцип действия которых такие же, как у рассмотренных выше электромашин с вращательным движением рабочего органа. Для привода вращательных пневмомашин применяются поршневые, турбинные и ротационные пневмодвигатели.
Наибольшее распространение получили ротационные пневмодвигатели, которые по сравнению с поршневыми более просты по конструкции, портативны (на 1 кВт мощности двигателя приходится не более 1 кг массы), быстроходны (до 20 000 об/мин), легко реверсируются и могут выдерживать значительные перегрузки.
Турбинные двигатели, имеющие частоту вращения до 100 000 об/мин, применяются в высокоскоростных шлифовальных машинах с абразивными борголовками диаметром до 30 мм. Основными недостатками таких двигателей являются быстрый износ лопаток и значительный шум при работе.
Ротационный двигатель (рис.
15. 10) состоит из корпуса (статора), ротора,
в пазах которого свободно установлены
лопатки, передней и задней крышек,
закрывающих статор с торцов. Ротор
расположен эксцентрично относительно
внутренней цилиндрической поверхности
статора. Лопатки изготовляются
из текстолита толщиной 3—5 мм и могут
свободно перемещаться в пазах ротора
в радиальном направлении. Сжатый воздух,
поступая в рабочую полость двигателя
(т. е. в пространство между двумя
соседними лопатками) через отверстие
в задней крышке, давит на выступающие
части лопаток и заставляет ротор
вращаться. Лопатки при вращении
прижимаются центробежной силой
к внутренней поверхности статора,
препятствуя перемещению
Рис. 15. 10. Пневматический ротационный двигатель
Выступающий конец вала ротора обычно выполнен в виде прямозубой цилиндрической шестерни, которая служит ведущим звеном планетарного редуктора.
Ротационные пневмодвигатели изготовляются реверсивными и нереверсивным и, имеющими правое или левое вращение ротора. В реверсивных пневмодвигателях сжатый воздух подается попеременно в правую или левую рабочие полости двигателя, заставляя ротор вращаться в соответствующем направлении. Реверсирование производится при помощи специального механизма, устанавливаемого в задней крышке двигателя или в пусковом устройстве. Поддержание заданной скорости ротора ротационных двигателей обеспечивается центробежными регуляторами.
Для снижения шума до уровня санитарных норм машины с ротационными пневмодвигателями снабжаются глушителями.
Основные узлы тшевмомашины вращательного действия (двигатель, редуктор, рукоятка с пусковым устройством) изготовляются в виде отдельных унифицированных узлов, легко заменяемых при выходе их из строя.
На рис. 15.11 показаны пневмомашины вращательного действия: пневмосверлильная, пневмогайковерт и пневмошлифовальная.
Пневмосверлильная машина (рис. 15.11, а) имеет встроенный нереверсивный ротационный пневмодвигатель, установленный в рукоятке, с пусковым устройством куркового типа. Вращение от вала ротора передается через планетарный редуктор шпинделю, на конце которого крепится сверлильный патрон.
Сверлильные РМ выполняются прямыми и угловыми; они способны сверлить отверстия диаметром до 32 мм (по стали), имеют частоту вращения шпинделя (на холостом ходу) 400—2000 об/мин, мощность двигателя 0,4—1,8 кВт, массу 1,7—8 кг. Расход сжатого воздуха при максимальной мощности составляет 0,9—2 м3/мин, рабочее давление воздуха 5 кгс/см2 (0,5 МПа).
Пневмогайковерты пистолетного типа (рис. 15.11,6) конструктивно однотипны, имеют реверсивный ротационный пневмо-двигатель с механизмом реверса, вибробезопасный ударный механизм, корпус и рукоятку со встроенным в нее пусковым устройством с курком. Вращательное движение двигателя преобразуется ударным механизмом в ударные импульсы шпинделя, на котором крепятся сменные головки (ключи). Благодаря специальному приспособлению пневмогайковерты могут также завинчивать шпильки. Отечественные пневмогайковерты выпускаются прямыми и угловыми, обеспечивают сборку резьбовых соединений диаметром 12—42 мм, развивают наибольший момент затяжки 6,3—150 кгс-м (63—1500 Н-м). Масса машин составляет 1,9—9,5 кг, расход сжатого воздуха 0,7—1,0 м3/мин, при рабочем давлении 5 кгс/см2 (0,5 МПа).
Прямая пневмошлифовальная машина (рис. 15.11, в) выполнена по безредукторной схеме и состоит из корпуса с пусковым устройством, ротационного пневмодвигателя, с регулятором частоты вращения 16 и глушителем шума, виброзащитных рукояток, защитного кожуха и шпинделя с абразивным кругом. При повороте крана пускового устройства сжатый воздух, попадая в рабочую полость двигателя, вращает ротор, передний конец которого соединен со шпинделем.
Прямые машины комплектуются плоскими шлифовальными кругами диаметром 60—150 мм, угловые — чашечными кругами диаметром до 125 мм. Частота вращения шпинделя пневмошли-фовальных машин составляет 4600—12700 об/мин, мощность двигателя 0,4—1,3 кВт при расходе сжатого воздуха 0,9—1,6 м3/мин.
К ударным пневмомашинам относятся молотки различного назначения— отбойные, клепальные и рубильно-чеканочные, а также бетоноломы, трамбовки, шпалоподбойки, бучарды и др.
При производстве сантехнических
работ, прокладке газовых, водопроводных
и канализационных труб наибольшее
распространение получили аналогичные
по конструкции молотки и
Рис. 15.11. Пневматические машины вращательного действия с ротационным двигателем
В современных пневмомашинах ударного действия применена система комплексной виброзащиты оператора, основанная на использовании элементов пневмопружинных виброизоляторов.
Отбойные молотки применяют для рыхления твердых и мерзлых грунтов при производстве траншейных работ небольшого объема, для пробивки углублений, отверстий и проемов в стенах и перекрытиях, а также для разборки дорожных покрытий.
Клепальные молотки, применяемые совместно с пневматическими поддержками, предназначены для клепки в горячем состоянии заклепок диаметром до 32 мм при сборке различных металлоконструкций.
Рис. 15. 12. Универсальный рубильно-
Рубильно-чеканочные молотки
предназначены для чеканки
Бетоноломы применяют для разрушения фундаментов, вскрытия бетонных и асфальтобетонных дорожных покрытий, пробивки углублений, отверстий и проемов в бетонных и железобетонных перекрытиях, для разработки твердых и мерзлых грунтов при рытье котлованов, траншей и проходке туннелей.
Рассмотрим конструктивные особенности пневмомашин ударного действия на примере универсального рубильно-чеканочного молотка (рис. 15.12, а). Молоток состоит из ствола, поршня-бойка, воздухораспределительного механизма (золотниковой коробки с золотником), рукоятки с клапаном и пусковым курком, сменного рабочего наконечника и концевой буксы для его удержания.