Автор работы: Пользователь скрыл имя, 29 Января 2013 в 13:30, контрольная работа
В силу ряда причин в регрессионных моделях может иметь место корреляционная зависимость между соседними случайными отклонениями. Это нарушает одну из фундаментальных предпосылок МНК. Вследствие этого оценки, полученные на основе МНК, перестают быть эффективными. Это делает ненадежными выводы по значимости коэффициентов регрессии и по качеству самого уравнения. Поэтому достаточно важным является умение определить наличие автокорреляции и устранить это нежелательное явление. Существует несколько методов определения автокорреляции, среди которых были выделены графический, метод рядов, критерий Дарбина-Уотсона.
Введение
1. Суть и причины автокорреляции
2. Обнаружение автокорреляции
2.1 Графический метод
2.2 Метод рядов
2.3 Критерий Дарбина-Уотсона
2.4 Тест серий (тест Бреуша-Годфри)
2.5 Q-тест Льюинга - Бокса
3. Последствия автокорреляции
4. Методы устранения
4.1 Определение на основе статистики Дарбина-Уотсона
4.2 Метод Кохрана-Оркатта
4.3 Метод Хилдрета-Лу
4.4 Метод первых разностей
Заключение
Список использованной литературы