Методы экспертных оценок

Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 08:44, курсовая работа

Описание

Современная экономика предъявляет новые, более высокие требования к управлению. Вопросы совершенствования методов управления приобретают сейчас очень важное значение, поскольку именно в этой сфере имеются еще большие резервы роста эффективности народного хозяйства.

Содержание

Глава 1. ЭКСПЕРТИЗА В УПРАВЛЕНИИ 5
1.1. Роль экспертов в управлении 5
1.2. Метод экспертных оценок 7
1.3. Организация экспертного оценивания 9
1.4. Подбор экспертов 9
1.5. Опрос экспертов 10
Глава 2. ФОРМАЛИЗАЦИЯ ИНФРОРМАЦИИ
И ШКАЛЫ СРАВНЕНИЙ 12
Глава 3. ОБРАБОТКА ЭКСПЕРТНЫХ ОЦЕНОК 16
3.1. Задачи обработки 16
3.2. Групповая оценка объектов 17
3.3. Оценка согласованности мнений экспертов 22
3.4. Обработка парных сравнений объектов 25
3.5. Определение взаимосвязи ранжировок 27
Заключение 31
Список литературы

Работа состоит из  1 файл

Методы экспертных оценок.doc

— 1.09 Мб (Скачать документ)

   2.

   3.

причем равенство достигается, если ранжировка «лежит между» ранжировками  и . Понятие «лежит между» означает, что суждение о некоторой паре  объектов в ранжировке совпадает с суждением об этой паре либо в , либо в  или же в   в   а в  

4.

где  получается из  некоторой перестановкой объ­ектов, а  из  той же самой перестановкой. Эта ак­сиома утверждает независимость расстояния от перену­мерации объектов.

5. Если две ранжировки ,  одинаковы всюду, за исключением n-элементного множества элементов, явля­ющегося одновременно сегментом обеих ранжировок, то  можно вычислить, как если бы рассматрива­лась ранжировка только этих n-объектов. Сегментом ранжировки называется множество, дополнение которо­го непусто и все элементы этого дополнения находятся либо впереди, либо позади каждою элемента сегмента. Смысл этой аксиомы состоит в том, что если две ранжи­ровки полностью согласуются в начале и конце сегмента, а отличие состоит в упорядочении средних n-объектов, то естественно принять, что расстояние между ранжиров­ками должно равняться расстоянию, соответствующему ранжировкам средних n-объектов.

 6. Минимальное расстояние равно единице.

Пространство ранжиро­вок при двух объектах можно изобразить в виде трех точек, лежащих на одной прямой. Расстояния между точками равны   При трех объектах про­странство всех возможных ранжировок состоит из 13 то­чек.

Используя введенную метрику, определим обобщен­ную ранжировку как такую точку, которая наилучшим образом согласуется с точками, представляющими собой ранжировки экспертов. Понятие наилучшего согласова­ния на практике чаще всего определяют как медиану и среднюю ранжировку.

Медиана есть такая точка в пространстве ранжиро­вок, сумма расстояний от которой до всех точек - ран­жировок экспертов является минимальной. В соответст­вии с определением медиана вычисляется из условия

Средняя ранжировка есть такая точка, сумма квад­ратов расстояний от которой до всех точек – ранжиро­вок экспертов является минимальной. Средняя ранжи­ровка определяется из условия

Пространство ранжировок конечно и дискретно, по­этому медиана и средняя ранжировка могут быть только какими-либо точками этого пространства. В общем слу­чае медиана и средняя ранжировка могут не совпадать ни с одной из ранжировок экспертов.

Если учитывается компетентность экспертов, то ме­диана и средняя ранжировка определяются из условий [12]:

 

где  -  коэффициенты компетентности экспертов.

Если ранжировка объектов производится по несколь­ким показателям, то определение медианы вначале про­изводится для каждого эксперта по всем показателям, а затем вычисляется медиана по множеству экспертов [12]:

                (j=1,2,…,m);

где  - коэффициенты весов показателей.

Основным недостатком определения обобщенной ран­жировки в виде медианы или средней ранжировки яв­ляется трудоемкость расчетов. Естественный способ отыскания  или   в виде перебора всех точек простран­ства ранжировок неприемлем вследствие очень быстро­го роста равномерности пространства при увеличении количества объектов и, следовательно, роста трудоемко­сти вычислений. Можно свести задачу отыскания  или  к специфической задаче целочисленного программи­рования. Однако это не очень эффективно уменьшает вы­числительные трудности.

Расхождение обобщенных ранжировок при различ­ных критериях возникает при малом числе экспертов и несогласованности их оценок. Если мнения экспертов близки, то обобщенные ранжировки, построенные по критериям медианы и среднего значения, будут совпа­дать.

Сложность вычисления медианы или средней ран­жировки привела к необходимости применения более простых способов построения обобщенной ранжировки.

К числу таких способов относится способ сумм рангов.

Этот способ заключается в ранжировании объектов по величинам сумм рангов, полученных каждым объек­том от всех экспертов. Для матрицы ранжировок  составляются суммы [12]

                    (i=1,2,…,n).

Далее объекты упорядочиваются по цепочке неравенств 

Для учета компетентности экспертов достаточно умножить каждую i-ю ранжировку на коэффициент ком­петентности j-го эксперта  В этом случае вы­числение суммы рангов для i-го объекта производится по следующей формуле [12]:

                (i=1,2,…,n).

Обобщенная ранжировка с учетом компетентности экс­пертов строится на основе упорядочения сумм рангов для всех объектов.

Следует отметить, что построение обобщенной ранжи­ровки по суммам рангов является корректной процеду­рой, если ранги назначаются как места объектов в виде натуральных чисел 1, 2, ..., n. Если назначать ранги произвольным образом, как числа в шкале порядка, то сумма рангов, вообще говоря, не сохраняет условие мо­нотонности преобразования и, следовательно, можно по­лучать различные обобщенные ранжировки при различ­ных отображениях объектов на числовую систему. Нуме­рация мест объектов может быть произведена единст­венным образом с помощью натуральных чисел. Поэтому при хорошей согласованности экспертов построение обобщенной ранжировки по методу сумм рангов дает результаты, согласующиеся с результатами вычисления медианы.

Еще одним более обоснованным в теоретическом от­ношении подходом к построению обобщенной ранжиров­ки является переход от матрицы ранжировок к матрице парных сравнений и вычисление собственного вектора, соответствующего максимальному собственному числу этой матрицы. Упорядочение объектов производится по величине компонент собственного вектора.

3.3. Оценка согласованности мнений экспертов

При ранжировании объектов эксперты обычно расходят­ся во мнениях по решаемой проблеме. В связи с этим возникает необходимость количественной оценки степе­ни согласия экспертов. Получение количественной ме­ры согласованности мнений экспертов позволяет более обоснованно интерпретировать причины в расхождении мнений.

В настоящее время известны две меры согласованно­сти мнений группы экспертов: дисперсионный и энтро­пийный коэффициенты конкордации.

Дисперсионный коэффициент конкордации. Рас­смотрим матрицу результатов ранжировки n объектов группой из m экспертов  (j=1,…,m; i=1,…,n), где  - ранг, присваиваемый j-м экспертом i-му объекту. Составим суммы рангов по каждому столбцу. В резуль­тате получим вектор с компонентами [12]

   (i=1,2,…,n).                                                                                                     (5.14)           

Величины  рассмотрим как реализации случайной величины и найдем оценку дисперсии. Как известно, оп­тимальная по критерию минимума среднего квадрата ошибки оценка дисперсии определяется формулой [12]:

,                                                                                                        (5.15)

где  - оценка математического ожидания, равная

                                                                                                                         (5.16)

Дисперсионный коэффициент конкордации определя­ется как отношение оценки дисперсии (5.15) к макси­мальному значению этой оценки [12]

.                                                                                                                          (5.17)

Коэффициент конкордации изменяется от нуля до еди­ницы, поскольку .

Вычислим максимальное значение оценки дисперсии для случая отсутствия связанных рангов (все объекты различны). Предварительно покажем, что оценка мате­матического ожидания зависит только от числа объек­тов и количества экспертов. Подставляя в (5.16) зна­чение   из (5.14), получаем [12]

                                                                                                                    (5.18)

Рассмотрим вначале суммированные по i при фиксиро­ванном  j. Это есть сумма рангов для j-го эксперта. По­скольку эксперт использует для ранжировки натураль­ные числа от 1 до n, то, как известно, сумма натураль­ных чисел от 1 до n  равна [12]

                                                                                                                 (5.19)

Подставляя (5.19) в (5.18), получаем [12]

                                                                                                  (5.20)

Таким образом, среднее значение зависит только от числа экспертов m и числа объектов n.

Для вычисления максимального значения оценки дис­персии подставим в (5.15) значение  из (5.14) и воз­ведем в квадрат двучлен в круглой скобке. В результате получаем [12]

                                                                       (5.21)

Учитывая, что из (5.18) следует

получаем [12]

                                                                                           (5.22)

Максимальное значение дисперсии достигается при наибольшем значении первого члена в квадратных скоб­ках. Величина этого члена существенно зависит от рас­положения рангов - натуральных чисел в каждой стро­ке i. Пусть, например, все m экспертов дали одинаковую ранжировку для всех n объектов. Тогда в каждой строке матрицы будут расположены одинаковые числа. Следовательно, суммирование рангов в каждой i-u стро­ке дает m-кратное повторение i-ro числа [12]:

Возводя в квадрат и суммируя по i, получаем значение первого члена в (5.22) [12]:

                                                                             (5.23)

Теперь предположим, что эксперты дают несовпадающие ранжировки, например, для случая n=m все эксперты присваивают разные ранги одному объекту. Тогда [12]

     

Сравнивая это выражение с  при m=n, убеждаемся, что первый член в квадратных скобках формулы (9) ра­вен второму члену и, следовательно, оценка дисперсии равна нулю.

Таким образом, случай полного совпадения ранжиро­вок экспертов соответствует максимальному значению оценки дисперсии. Подставляя (5.23) в (5.22) и выпол­няя преобразования, получаем [12]

                                                                                                            (5.24)

Введем обозначение [12]

                                                                                                            (5.25)

Используя (5.25), запишем оценку дисперсии (5.15) в виде [12]

                                                                                                                        (5.26)

Подставляя (5.24), (5.25), (5.26) в (5.17) и сокращая на множитель (n—1), запишем окончательное выражение для коэффициента конкордации [12]

                                                                                                                (5.27)

Данная формула определяет коэффициент конкордации для случая отсутствия связанных рангов.

Если в ранжировках имеются связанные ранги, то максимальное значение дисперсии в знаменателе форму­лы (5.17) становится меньше, чем при отсутствии свя­занных рангов. Можно показать, что при наличии свя­занных рангов коэффициент конкордации вычисляется по формуле [12]:

                                                                                                 (5.28)

где

                                                                                                                 (5.29)

В формуле (5.28)  - показатель связанных рангов в j-й ранжировке,  - число групп равных рангов в j-й ран­жировке,  - число равных рангов в k-й группе связан­ных рангов при ранжировке j-м экспертом. Если совпа­дающих рангов нет, то =0, =0 и, следовательно, =0. В этом случае формула (5.28) совпадает с форму­лой (5.27).

Коэффициент конкордации равен 1, если все ранжи­ровки экспертов одинаковы. Коэффициент конкордации равен нулю, если все ранжировки различны, т. е. со­вершенно нет совпадения.

Коэффициент конкордации, вычисляемый по формуле (5.27) или (5.28), является оценкой истинного значения коэффициента и, следовательно, представляет собой случайную величину. Для определения значимости оценки коэффициента конкордации необходимо знать распреде­ление частот для различных значений числа экспертов m и количества объектов n. Распределение частот для W при  и вычислено в [52]. Для боль­ших значений m и n можно использовать известные ста­тистики. При числе объектов n>7 оценка значимости коэффициента конкордации может быть произведена по критерию . Величина Wm(n—1) имеет  распределе­ние с v=n –1 степенями свободы.

При наличии связанных рангов  распределение с v=n—1 степенями свободы имеет величина [12]:

Информация о работе Методы экспертных оценок