Методика обучения школьников приемам решения текстовых арифметических задач

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 19:57, курсовая работа

Описание

Цель – исследовать методику работы над текстовой задачей, выявить новые подходы к решению текстовых арифметических задач.
Задачи:
Анализ литературы по данной проблеме.
Выявить роль текстовых задач в процессе обучения.
Изучить методику работы над текстовой задачей.
Анализ нетрадиционных подходов в методике работы над текстовой арифметической задачей.

Работа состоит из  1 файл

Методика обучения школьников приемам решения текстовых арифметических задач.doc

— 337.88 Кб (Скачать документ)

Рассмотрим вычитание.

Из 1 вычтем . Учащиеся кладут на стол круг, но замечают, что из него пока убрать ничего не возможно. Тогда они предлагают круг разрезать на 4 равные части и убрать одну. Делаем вывод, что 1 надо заменить дробью . После 2-3 примеров учащиеся сами делают вывод.

С использованием этого  материала дается понятие об основном свойстве дроби, когда на дробь  они выкладывают и т.д. Отработав этот материал, приступаем к решению задач.

Пример №1. В саду 120 деревьев. Березы составляют всех деревьев, а остальные сосны. Сколько было сосен?

Изобразим число деревьев, начертив отрезок. Напишем данные, причем число частей ставим под отрезком, так как с этими числами нужно выполнять деление при решении задачи (см. рис.2).

Рис. 2. Графическое  изображение задачи из примера №1

 

Вопрос: Что означает дробь  ?

Ответ: Все количество деревьев разделили на 3 равные части и березы составляют 2 части.

I способ:

120 / 3 = 40 (дер.) – составляют одну часть.

40*2 = 80 (дер.) – было  берез.

120 - 80 = 40 (дер.) – было  сосен.

II способ:

120 / 3 = 40 (дер.)

3 – 2 = 1 (часть) –  составляют сосны.

40*1 = 40 (дер.) – составляют сосны.

Ответ: 40 сосен.

Пример №2. 10 га занято свеклой, что составляет всего поля. Какова площадь поля?

 


Рис. 3. Графическое изображение задачи из примера №2

 

Изобразим площадь поля отрезком. Выясняем, что обозначает дробь . Замечаем, что 10 га составляют 2 части, и находим, сколько составляет 1 часть.

10 / 2 = 5 (га) – составляет одна часть.

Так как все поле составляет 5 частей, находим площадь поля.

5*5 = 25 (га) – площадь поля.

Ответ: 25 га.

Пример №3. Около дома стояло 7 машин. Из них – 2 белые. Какую часть всех машин составляют белые?


Рис. 4. Графическое изображение задачи из примера №3

 

Одна машина составляет всех машин, а так как белых 2, то белые составляют .

На основе этой задачи нужно отработать такие вопросы: Какую часть составляют 15 мин. от часа? Какую часть составляют 300 г? От килограмма? - и т.д.

Пример №4. Пионерский отряд решил собрать 12 кг макулатуры, собрал этого количества. Сколько килограммов собрал отряд?

Рис. 5. Графическое изображение задачи из примера №4

 

В процессе решения задач  нужно отметить, что плановое задание  всегда принимается за 1 и поэтому 12 кг принимаем как . Но так как учащиеся собрали , то изображенный отрезок продолжим еще на . Далее идет решение задачи обычным способом.

На основе опорных  чертежей можно решать и более сложные задачи.

Пример №5. Покупатель израсходовал в первом магазине всех денег, а во втором - остатка. Сколько денег у него было, если во втором он израсходовал 60 рублей?

Решая эту задачу, нужно  учитывать, что мы находим часть числа не от одной суммы, и поэтому чертеж следует дополнить.

Решая подобные задачи, учащиеся должны постоянно работать с чертежом.

 

Рис. 6. Графическое изображение задачи из примера №5

Объяснение  .

Так как 60 рублей составляют остатка, то найдем, сколько составляет 1 часть остатка.

60 / 3 = 20 (руб.) – составляет 1 часть остатка

Весь остаток составляет пять таких частей. Найдем остаток.

20*5 = 100 (руб.) – остаток  после первого магазина

Полученное число 100 ставим в верхней части чертежа.

Замечаем, что 100 рублей составляет лишь 5 частей всех денег, так как  по условию частей 7, а в первом магазине покупатель израсходовал 2.

7 – 2 = 5 (частей) – составляют 100 рублей.

Найдем, сколько составляет 1 часть всех денег.

100 / 5 = 20 (руб.) – составляет 1 часть всех денег.

Так как все деньги составляют 7 частей, найдем их количество.

20*7 = 140 (руб.) – было  у покупателя.

При устном счете учащиеся должны уметь составлять задачи по готовым чертежам. Например (рис 7.):

 

а)

б)

Рис. 7. Решение задач по готовым чертежам

 

В пятом классе после изучения деления и умножения дробей формулируем правило, позволяющее перейти к решению задач без помощи чертежей.

  1. известна часть, находим целое – действие деления;
  2. известно целое, находим часть – действие умножение.

 

2.4 Задачи на проценты

 

Процент – это сотая часть. наглядная иллюстрация процента может быть продемонстрирована на метровой школьной линейке с делениями по 1 см. В данном случае 1 см является сотой частью линейки, т.е. 1%. Можно дать следующие задания:

  1. показать на линейке 25%, 40% и т.д.
  2. назвать число процентов, которые показываются на линейке.

Затем работу можно продолжить на отрезках, задавая вопросы, например:

Как показать 1% отрезка?

Ответ: отрезок нужно  разделить на 100 равных частей и взять  одну часть.

Или: покажите 5% и т.д. (см. рис. 8).

Рис. 8. Метод  отложения на отрезке

 

Условимся, что деление  отрезка на 100 равных частей делаем словно. Приступая к решению задач, их нужно сравнить с задачами предыдущего  пункта, что ускорит усвоение приемов  решения.

Пример №1. Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге?

Рис. 9. Графическое изображение задачи из примера №1

 

Объяснение: Число страниц в Кинге неизвестно. Ставим знак вопроса. Но число страниц составляет 100%. Показываем это на отрезке, выполняя деление на условные 100 равных частей (для слабоуспевающих детей внизу отрезка можно ставить еще и число 100). Затем отмечаем число 138 и показываем, что оно составляет 23%.

При решении задач предыдущего раздела и задач на проценты следует объяснить учащимся, что прежде всего нужно выяснить, сколько составляет 1 часть или 1%.

Так как 138 страниц составляют 23%, то находим, сколько приходится на 1%.

138 / 23 = 6 (стр.) – составляет 1%.

Так как число страниц в книге составляет 100%, то

6*100% = 600 (стр.) – в книге.

Ответ: В книге 600 страниц.

Пример №2. Мальчик истратил на покупку 40% имевшихся у него денег, а на оставшиеся 30 копеек купил билет в кино. Сколько денег было у мальчика?

Рис. 10. Графическое изображение задачи из примера №2

 

Объяснение: Количество всех денег неизвестно, ставим знак вопроса. Все деньги составляют 100%, поэтому разделим отрезок условно на 100 равных частей. Найдем, сколько процентов составляют 30 копеек.

100%-40% = 60% - составляют 30 копеек.

Обозначаем 60% на чертеже. Найдем, сколько составляет 1% далее  объяснение аналогичное.

 

Пример №3. В школе 700 учащихся. Среди них 357 мальчиков. Сколько процентов учащихся этой школы составляют девочки?

Рис. 11. Графическое изображение задачи из примера №3

 

Объяснение: Число учащихся 700 человек, что составляет 100%. Отрезок  условно делим на сто равных частей. (Само выполнение чертежа подсказывает ученику первое действие).

700 / 100 = 7 (чел.) – составляют 1%.

Узнаем, сколько процентов составляют мальчики. Для этого:

357 / 7 = 51%

(Можно сказать и  так: «Сколько раз в 357 содержится  по 7%?»)

Работаем с чертежом. Узнаем, сколько процентов составляют девочки.

100%-51%=49%

Ответ 49%

При решении задачи чертеж должен быть постоянно в поле зрения учащихся, так как является наглядной иллюстрацией задачи.

Пример №4. По плану рабочий должен был сделать 35 деталей. Однако он сделал 14 деталей сверх плана. На сколько процентов он перевыполнил план?

Рис.12. Графическое изображение задачи из примера №4

 

Решая задачу, нужно объяснить, что план всегда составляет 100% и  поэтому 35 деталей составляют 100%. Чтобы узнать, сколько составляет 1% нужно:

35 / 100 = 0,35 (дет.)

Узнаем, сколько процентов  составляют 14 деталей (сколько раз  в 14 содержится по 0,35).

После изучения обыкновенных дробей и правил нахождения части числа и числа по части большинство задач лучше решать, переходя от процентов к дроби.

Пример №1. Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге?

23% составляет 0,23. Так  как известна часть количества  страниц, а нужно найти все  количество, то выполняем действие  деления (по правилу, записанному  выше):

138 / 0,23 = 13800 : 23=600 (стр.)

Пример №2. Покупатель израсходовал в первом магазине 40% всех денег, а остальные - во втором. Сколько денег он израсходовал во втором магазин, если у него было 160 рублей?

40% составляют 0,4. так как  известно все количество денег,  а находим их часть, то выполняем действие умножения.

160*0,4 = 64 (руб.) – израсходовал  покупатель в первом магазине.

Находим, сколько израсходовал покупатель во втором магазине.

160 - 64=96 (руб.)

Записываем ответ.

2.5 Задачи на совместную работу

 

При решении этих задач нужно выяснить с учащимися, что возможны два случая:

  1. объем выполненной работы известен;
  2. объем выполненной работы неизвестен.

Первые задачи удобно решать, используя таблицы.

Пример. Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дней, второй работал на 2 дня меньше. Сколько деталей в день делал второй токарь?

Составим таблицу (см. табл.3).

Таблица 3

Условие задачи

 

Производительность

Время

Количество

1т.

40 деталей

5 дней

2т.

?

на 2 дня меньше


 

 

Объяснение. Так как  известны производительность и время  работы первого токаря, найдем количество деталей, изготовленных первым токарем.

40*5 = 200 (дет.) – изготовил  первый токарь.

Работая с таблицей, делаем вывод, что можно найти, сколько деталей изготовил второй токарь.

350 – 200 = 150 (дет.) – изготовил  второй токарь.

Обратив внимание на опорные  слова «на…меньше», делаем вывод, что  можно найти, сколько дней работал  второй.

5 – 2 = 3 (дня) – работал второй токарь.

Зная количество и время работы второго токаря, находим его производительность:

150 / 3 = 50 (дет.) – изготовлял второй токарь в день.

Уже при решении первых задач, нужно приучать детей к  правильной терминологии.

Для решения задач  второго типа, текст задачи можно  проиллюстрировать чертежами, что помогает учащимся зрительно видеть задачу.

Пример 1. Новая машина может выкопать канаву за 8 часов, а старая – за 12. Новая работала 3 часа, а старая - 5 часов. Какую часть канавы осталось выкопать?

Рис.13. Графическое изображение задачи из примера №1

 

Дадим наглядное представление  этих задач. Условимся, что объем  выполненной работы неизвестен, поэтому  принимаем его за 1 и изображаем в виде отрезка, но отрезков будет  три, так как возможны три случая:

  1. работает одна старая машина;
  2. работает одна новая машина;
  3. работают вместе обе машины.

Выясним, почему отрезки  равной длины (обе машины выполняют  одну и ту же работу).

Разбор задачи. На сколько равных частей делим первый отрезок? На 8, так как работа выполняется за 8 часов. Что показывает 1 часть? Какую часть работы выполняет новая машина за 1 час, т.е. какова ее производительность?

Так как новая машина работала 3 часа, то выполнила  части все работы. Отмечаем на третьем отрезке - .

Информация о работе Методика обучения школьников приемам решения текстовых арифметических задач