Методика обучения школьников приемам решения текстовых арифметических задач

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 19:57, курсовая работа

Описание

Цель – исследовать методику работы над текстовой задачей, выявить новые подходы к решению текстовых арифметических задач.
Задачи:
Анализ литературы по данной проблеме.
Выявить роль текстовых задач в процессе обучения.
Изучить методику работы над текстовой задачей.
Анализ нетрадиционных подходов в методике работы над текстовой арифметической задачей.

Работа состоит из  1 файл

Методика обучения школьников приемам решения текстовых арифметических задач.doc

— 337.88 Кб (Скачать документ)

Аналогичные рассуждения  проводим, рассматривая старую машину, и отмечаем на третьем отрезке - .

Далее рассматривается  третий нижний отрезок, и по нему выясняется, как найти оставшуюся часть, т.е., отрезок, обозначенный знаком вопроса.

В связи с экономией  времени деление отрезков производится «на глаз», хотя очень полезно  показать, как можно разделить  быстро на 4 равные части (отрезок делится  пополам, а затем каждая часть  еще пополам). Аналогично деление  на 8 и т.д. На 6 частей – сначала пополам, а потом каждую часть - на три.

Пример №2. Два кузнеца, работая вместе, могут выполнить работу за 8 часов. За сколько часов может выполнить работу первый кузнец, если второй выполняет ее за 12 часов?

Изображая чертеж, мы проводим те же рассуждения, что и в предыдущей задаче.

Рис.14. Графическое изображение задачи из примера №2

 

Разбор задачи. Первый отрезок делим на 8 равных частей, так как оба выполняют работу за 8 часов. Одна часть показывает, какую  часть работы они выполняют вместе за 1 час, т.е., их совместную производительность. Аналогичные рассуждения проводим для расчета производительности второго кузнеца.

Зная их совместную производительность и производительность второго, можно  найти производительность первого.

Результат показываем на чертеже.

Выясняем, сколько часов  нужно первому кузнецу для  выполнения работы (сколько раз в 1 содержится по ).

Ответ: 24 часа.

Выводы по главе 2

 

Таким образом, использование  алгоритмов, таблиц, рисунков, общих приемов дает возможность ликвидировать у большей части учащихся страх перед текстовой задачей, научить распознавать типы задач и правильно выбирать прием решения.

Нередко, некоторые ученики  просто списывают задачу с доски, не пытаясь вникнуть в ее смысл. Таким ученикам можно предложить творческую работы, где они должны сами составить задачу и решить ее. Составляя задачу, ученик более осознанно поймет существование зависимости между величинами, почувствует, что числа берутся не произвольно: некоторые задаются, а другие получаются на основе выбранных. При составлении задачи большое значение имеют и обратные задачи. Для активного участия в поиске решения хорошо использовать опорные карты-сигналы, которые должны быть у всех учащихся.

 

ЗАКЛЮЧЕНИЕ

 

Выводы по работе (реальность достижения цели, реализация задач, выполнимость гипотезы….). О перспективах дальнейшей работы по теме. Где, кем и как может быть использована работа.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

  1. Алгебра: Учеб. для 7 кл. сред шк./ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. С.А. Теляковского. – М.: Просвещение, 1989. – 240 с.: ил.
  2. Алгебра: Учеб. для 8 кл. сред шк./ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. С.А. Теляковского. - 2-е изд. – М.: Просвещение, 1991. – 239 с.: ил.
  3. Алгебра: Учеб. для 9 кл. общеобразоват. учреждений/ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. С.А. Теляковского. - 4-е изд. – М.: Просвещение, 1997. – 272 с.: ил.
  4. Болтянский, В. Г. Как устроена теорема? [Текст] / В. Г. Болтянский // Математика в школе. – 1987. – № 1. – С. 41-49.
  5. Обучение решению задач как средство развития учащихся: из опыта работы. Методическое пособие для учителя. – Киров, ИИУ. – 1999. – С.3-18.
  6. Тоом А.Л. Между детством и математикой: Текстовые задачи в математическом образовании/ Математика, 2005, № 14
  7. Фридман Л.М., Турецкий Е.Н. Как научится решать задачи: Кн для учащихся ст. классов сред. шк. – 3-е изд., дораб. – М.: Просвещение, 1989. – 192 с.: ил.
  8. Шевкин А.В. Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1-4. – М.: Педагогический университет «Первое сентября», 2006. 88 с.
  9. Шевкин А.В. Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 5-8. – М.: Педагогический университет «Первое сентября», 2006. 80 с.
  10. Методика преподавания математики [Текст]: учебник для вузов / Е. С. Канин, А. Я. Блох [и др.]; под ред. Р. С. Черкасова. – М.: Просвещение, 1985. – 268 с.



Информация о работе Методика обучения школьников приемам решения текстовых арифметических задач