Автор работы: k*************@gmail.com, 28 Ноября 2011 в 13:17, курсовая работа
Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. В середине XX в. было установлено важное свойство материи: все ее формы движения превращаются друг в друга в строго определенных отношениях. Именно такое свойство и позволило ввести понятие энергии как общей меры движения материи.
ВВЕДЕНИЕ 2
1. ГИДРОИСТОЧНИКИ И ГЕОТЕРМАЛЬНЫЕ ИСТОЧНИКИ ЭНЕРГИИ 4
2. ГЕЛИОЭНЕРГЕТНКА 8
3. ЭНЕРГИЯ ВЕТРА 11
4. АТОМНАЯ ЭНЕРГЕТИКА 13
5. ЭНЕРГИЯ МИРОВОГО ОКЕАНА 16
ЗАКЛЮЧЕНИЕ 18
СПИСОК ЛИТЕРАТУРЫ 19
Энергия движущихся воздушных масс огромна. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, наносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии. Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Особенно богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана.
В наши дни ветроустановки вырабатывают лишь небольшую часть производимой электроэнергии во всем мире. Техника XX в. открыла совершенно новые возможности для электроэнергетики. Созданы высокопроизводительные установки, способные вырабатывать электроэнергию даже при очень слабом ветре. Предлагается множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются самые последние достижения многих отраслей естествознания. К созданию совершенной конструкции ветроколеса – сердца любой ветроэнергетической установки – привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти и исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы разнообразные конструкции современных ветровых установок.10
Можно привести примеры необычного использования энергии. Один из американских изобретателей, наблюдая за тем, как пролетающие по шоссе автомобили вздымают по обочинам тучи пыли и гонят вдоль дороги легкий мусор, пришел к мысли, что можно использовать энергию ветра, возникающего от движения транспорта. Он предложил встроить в бетонный разделительный барьер, идущий по середине самых оживленных автомагистралей, ветряные турбины с вертикальной осью, что позволит улавливать энергию от автомобилей, несущихся в обоих направлениях. Выработанная энергия должна либо поступать в общую сеть, либо запасаться в аккумуляторах и использоваться для освещения дороги по ночам. Измерения на обочине оживленного шоссе показали, что искусственный ветер дует около 18 ч в сутки со средней скоростью 4,5—5,5 м/с. Это больше, чем в районе крупных ветровых электростанций, работающих в Калифорнии. Сейчас исследователи продолжают измерения на разных дорогах и собираются приступить к испытаниям разных типов ветряных турбин. Еще один пример. На западном побережье Дании, у городка Райсбю, построена электростанция из 40 ветродвигателей. Общая мощность ее составляет 24 МВт. Ветродвигатели оборудуются электронными регуляторами немецкой фирмы «Сименс», в которых впервые применены полупроводниковые тиристоры. Это позволило отказаться от громоздких конденсаторов и дросселей. Система регулировки обеспечивает ровную отдачу мощности независимо от скорости ветра.11
Каждый источник энергии должен работать там, где дает наибольшую отдачу, максимальную выгоду. На севере у нас огромные труднодоступные территории. Вырабатывать здесь энергию очень сложно, и цена ее более высокая, чем в центре страны. Здесь то и могут найти применение ветроустановки. Скорость ветра на побережье морей и океанов составляет в среднем за год более 6 м/с. При работе ветроустановки мощностью в 1 МВт в течение шести месяцев потребитель энергии может получить около 2,5 млн кВт, что вполне достаточно для обеспечения теплом и светом поселка в 150 жилых домов.
Современная ветроустановка мощностью в 1 МВт состоит из ветроколеса диаметром 48 м, установленного на стальной конической башне высотой 40 м, на которой смонтированы агрегат для передачи мощности от ветроколеса к генератору, система управления и тормозной механизм. Ветроустановка полностью автоматизирована: сама «ловит ветер» и проверяет перед запуском состояние всех узлов и агрегатов. При скорости ветра 3,5—4 м/с развивается мощность 40—50 кВт, а при скорости 13,5 м/с – 1000 кВт. Срок службы установки – 20—25 лет. Стоит она примерно 1 млн долл.12
К 1998 г. насчитывалось в России около полутора десятков крупных и примерно 100 мелких ветроустановок, в то время как за рубежом их общее число составило более 130 тысяч. Сегодня почти все развитые страны строят ветроустановки. В строительстве ветроустановок лидирует маленькая страна Дания. Около двух десятилетий назад именно она дала толчок развитию современной ветроэнергетики. В этой стране работают более четырех тысяч самых эффективных установок с лучшими показателями в мире. Датчане построили заводы по производству ветроустановок в Индии, Китае и США. Производятся ветроустановки и в России. По своим техническим показателям они не уступают зарубежным аналогам.
Ветроустановки порождают вибрации и шум, неблаготворно влияющие на живые организмы. Поэтому их строят обычно вдали от населенных пунктов. Металлические лопасти могут создавать помехи для радио- и телепередач. Но все же в целом ветроэнергетику принято считать экологически безопасной.
Многие
страны активно развивают
Сегодня примерно 17% мирового производства электроэнергии приходится на атомные электростанции (АЭС). В некоторых странах ее доля значительно больше. Например, в Швеции она составляет около половины всей электроэнергии, во Франции – около трех четвертей. Недавно согласно принятой в Китае программе вклад энергии атомных электростанций предусмотрено увеличить в пять—шесть раз. Заметную, хотя пока не определяющую, роль АЭС играют в США и России.
Более сорока лет назад, когда дала ток первая атомная станция в мало кому известном в то время городке Обнинске, многим казалось, что атомная энергетика – вполне безопасная и экологически чистая. Авария на одной из американской АЭС, а затем катастрофа в Чернобыле показали, что на самом деле атомная энергетика сопряжена с большой опасностью. Люди напуганы. Общественное сопротивление сегодня таково, что строительство новых АЭС в большинстве стран практически остановлено. Исключение составляют лишь восточно-азиатские страны – Япония, Корея, Китай, где атомная энергетика продолжает развиваться.
Специалисты, хорошо знающие сильные и слабые стороны реакторов, смотрят на атомную опасность более спокойно. Накопленный опыт и новые технологии позволяют строить реакторы, вероятность выхода которых из-под контроля хотя и не равна нулю, но крайне мала. На современных атомных предприятиях обеспечен строжайший контроль радиации в помещениях и в каналах реакторов: сменные комбинезоны, специальная обувь, автоматические детекторы излучений, которые ни за что не откроют шлюзовые двери, если на вас есть хотя бы небольшие следы радиоактивной «грязи». Например, на атомной электростанции в Швеции, где чистейшие пластиковые полы и непрерывная очистка воздуха в просторных помещениях, казалось бы, исключают даже мысль о сколько-нибудь заметном радиоактивном заражении.
Атомной
энергетике предшествовали испытания
ядерного оружия. На земле и в
атмосфере проводились
Аналогичные работы велись и в нашей стране, только наряду с водо-водяными реакторами разрабатывался канальный графитовый реактор (в нем теплоносителем тоже служила вода, а замедлителем— графит). Однако по сравнению с водо-водяным реактором у графитового мала удельная мощность. В то же время такой реактор обладал важным преимуществом – уже имелся значительный опыт сооружения и эксплуатации промышленных графитовых реакторов, отличающихся от транспортных установок главным образом давлением и температурой охлаждающей воды. А наличие опыта означало экономию времени и средств на опытно-конструкторские работы. При создании наземного прототипа графитового реактора для транспортных установок стала очевидной его бесперспективность. И тогда было решено использовать его для атомной энергетики. Реактор AM, а точнее, его турбогенератор мощностью 5000 кВт 27 июня 1954 г. подключили к электрической сети, и весь мир узнал, что в СССР пущена первая в мире АЭС – атомная электростанция.
Наряду с канальными графитовыми реакторами в нашей стране, как и в США, с середины 50-х XX в. годов развивалось направление, основанное на использовании водо-водяных энергетических реакторов (ВВЭР). Их характерная особенность – огромный корпус диаметром 4,5 м и высотой 11м, рассчитанный на высокое давление —до 160 атм. Производство и транспортировка таких корпусов к площадке АЭС – чрезвычайно сложная задача. Американские фирмы, приступив к развитию атомной энергетики на базе реакторов PWR, возвели на берегах рек заводы для производства реакторных корпусов, построили баржи для их перевозки к месту строительства АЭС и краны грузоподъемностью в 1000 т. Этот продуманный подход позволил США не только удовлетворить собственные потребности, но и захватить в 70-х годах внешний рынок по производству атомной энергии. СССР не мог столь широко и быстро развивать промышленную базу для АЭС с реакторами ВВЭР. В начале лишь один Ижорский завод мог изготавливать по одному корпусу реактора в год. Пуск Аттоммаша состоялся только в конце 70-х годов.14
Реактор РБМК (реактор большой мощности, канальный), в котором вода, охлаждающая тепловыделяющие элементы, находится в состоянии кипения, появился как очередной этап последовательного развития канальных графитовых реакторов: промышленный графитовый реактор, реактор первой в мире АЭС, реакторы Белоярской АЭС. Ленинградская АЭС на РБМК проявила свой норов. Несмотря на наличие традиционной автоматической системы регулирования, оператор должен был по мере выгорания топлива все чаще и чаще вмешиваться в управление реактором (до 200 раз в смену). Это было связано с возникновением или усилением в процессе эксплуатации реактора положительных обратных связей, приводящих к развитию неустойчивости с периодом в 10 минут. Для нормального стабильного функционирования какого-либо устройства с положительной обратной связью необходима надежная система автоматического регулирования. Однако всегда существует опасность аварии из-за отказа подобной системы. С проблемой неустойчивости столкнулись и в Канаде, когда пустили в 1971 г. канальный реактор с тяжелой водой в качестве замедлителей нейтронов и кипящей легкой водой в качестве теплоносителя. Канадские специалисты решили не испытывать судьбу и закрыли установку. Сравнительно быстро была разработана новая, приспособленная к РБМК, система автоматического регулирования. Ее внедрение обеспечило приемлемую устойчивость реактора. В СССР развернулось серийное строительство АЭС с реакторами РБМК (нигде в мире подобные установки не использовались).15
Несмотря
на внедрение новой системы
Так нужно ли развивать атомную энергетику? Выработка энергии на АЭС и ACT (атомных станциях теплоснабжения) – это наиболее экологически чистый способ производства энергии. Энергия ветра, Солнца, подземного тепла и т. д. не может сразу и быстро заменить атомную энергию. Согласно прогнозу в США в начале XXI в. на все подобные способы производства энергии будет приходиться не более 10% вырабатываемой во всем мире энергии.
Спасти нашу планету от загрязнения миллионами тонн углекислого газа, окиси азота и серы, которые постоянно выбрасываются ТЭЦ, работающими на угле, мазуте, перестать сжигать в огромных количествах кислород, можно лишь с помощью атомной энергетики. Но только при выполнении одного условия: «Чернобыль» не должен повториться. Для этого необходимо создать абсолютно надежный энергетический реактор. Но в природе не бывает ничего абсолютно надежного, все процессы, не противоречащие законам природы, происходят с большей или меньшей вероятностью. И противники атомной энергетики рассуждают примерно так: авария маловероятна, но нет никаких гарантий, что она не случится сегодня или завтра. Задумываясь над этим, нужно учесть следующее. Во-первых, взрыв реактора РБМК в том состоянии, в котором он эксплуатировался до аварии, отнюдь не маловероятное событие. Во-вторых, при таком подходе мы все должны жить в постоянном страхе, что Земля не сегодня-завтра столкнется с крупным астероидом – вероятность такого события ведь тоже не равна нулю. Думается, можно считать абсолютно безопасным реактор, для которого вероятность крупной аварии достаточно мала.
Развитые страны с большой численностью населения в обозримом будущем не смогут из-за приближающейся экологической катастрофы обойтись без атомной энергетики даже при некоторых запасах обычных видов топлива. Режим экономии энергии может лишь на некоторое время отодвинуть проблему, но не решить ее. Кроме того, многие специалисты считают, что в наших условиях даже временного эффекта добиться не удастся: эффективность предприятий по энергоснабжению зависит от уровня развития экономики. Даже США потребовалось 20—25 лет со дня внедрения в промышленность энергоемких производств.