Автор работы: k*************@gmail.com, 28 Ноября 2011 в 13:17, курсовая работа
Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. В середине XX в. было установлено важное свойство материи: все ее формы движения превращаются друг в друга в строго определенных отношениях. Именно такое свойство и позволило ввести понятие энергии как общей меры движения материи.
ВВЕДЕНИЕ 2
1. ГИДРОИСТОЧНИКИ И ГЕОТЕРМАЛЬНЫЕ ИСТОЧНИКИ ЭНЕРГИИ 4
2. ГЕЛИОЭНЕРГЕТНКА 8
3. ЭНЕРГИЯ ВЕТРА 11
4. АТОМНАЯ ЭНЕРГЕТИКА 13
5. ЭНЕРГИЯ МИРОВОГО ОКЕАНА 16
ЗАКЛЮЧЕНИЕ 18
СПИСОК ЛИТЕРАТУРЫ 19
Вынужденная пауза, возникшая в развитии атомной энергетики, должна быть использована для разработки достаточно безопасного энергетического реактора на базе реактора ВВЭР, а также для разработки альтернативных энергетических реакторов, безопасность которых должна находиться на том же уровне, а экономическая эффективность значительно выше. Целесообразно построить демонстрационную АЭС с подземным размещением реактора ВВЭР в наиболее удобном месте, чтобы проверить ее экономическую эффективность и безопасность. 16
В последнее время предлагаются различные конструктивные решения атомных станций. В частности, компактную АЭС разработали специалисты Санкт-Петербургского морского бюро машиностроения «Малахит». Предлагаемая станция предназначается для Калининградской области, где проблема энергоресурсов стоит достаточно остро. Разработчики предусмотрели использование в АЭС жидкометаллического теплоносителя (сплава свинца с висмутом) и исключают возможность возникновения на ней радиационно-опасных аварий, в том числе при любых внешних воздействиях. Станция отличается экологической чистотой и экономической эффективностью. Все ее основное оборудование предполагается разместить глубоко под землей – в проложенном среди скальных пород туннеле диаметром в 20 м. Это дает возможность свести к минимуму число наземных сооружений и площадь отчуждаемых земель. Структура проектируемой АЭС – модульная, что тоже очень существенно. Проектная мощность Калининградской АЭС – 220 МВт, но может быть по мере необходимости уменьшена или увеличена в несколько раз при помощи изменения числа модулей.
Известно, что запасы энергии в Мировом океане колоссальны, Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на-20°С, равна примерно 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока используется лишь ничтожно малая доля этой энергии, да и то ценой больших и медленно окупающихся капиталовложений. Энергетика Мирового океана до сих пор кажется малоперспективной.
Происходит весьма быстрое истощение запасов ископаемого топлива (прежде всего нефти и газа), использование которого к тому же связано с существенным загрязнением окружающей среды (включая тепловое «загрязнение» и грозящее нежелательными климатическими последствиями повышение концентрации атмосферной углекислоты). Кроме того, ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляют ученых и инженеров уделять все большее внимание поискам безвредных источников энергии не только перепадов уровня воды в реках, солнечного тепла, ветра, но и энергии Мирового океана.
Неожиданной возможностью энергетики Мирового океана оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека-потребителя достаточно одного гектара плантаций таких водорослей. Большое внимание привлекает «океанотермическая энергоконверсия», т. е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например, при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей, как пропан, фреон или аммоний. В какой-то мере аналогичными, но пока, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной водой, например, морской и речной. Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.17
Предполагается,
что некоторые из предложенных океанских
энергетических установок могут
быть реализованы и стать
Бакены и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. Сегодня вряд ли существует прибрежный район, где не было бы своего собственного изобретателя, работающего над созданием устройства, использующего энергию волн. Начиная с 1966 г. два французских города полностью удовлетворяют свои потребности в электроэнергии за счет энергии приливов и отливов.
Группа океанологов обратила внимание на то, что Гольфстрим несет свои воды вблизи берегов Флориды со скоростью 5 миль в час. Идея использовать этот поток теплой воды была весьма заманчивой. Возможно ли это? Смогут ли гигантские турбины и подводные пропеллеры, напоминающие ветряные мельницы, генерировать электричество, извлекая энергию из течений и волн? «Смогут» – таково мнение специалистов. В предложенном проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли. Предсказывают даже, что электричество, полученное при использовании энергии Гольфстрима, может стать конкурентоспособным уже в ближайшем будущем.
Океан – замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В такой среде растворенный в воде кислород питает всех морских животных от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200—300 футов (60—90 м) бурых водорослей. Морскому биологу нужно сделать лишь шаг вперед, чтобы перейти от восприятия океана как природной системы поддержания жизни к попытке начать на научной основе извлекать из этой системы энергию. При поддержке военно-морского флота США в середине 70-х годов XX в. группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 40 футов (12 м) под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. Ферма была небольшая. По сути своей это был лишь эксперимент. На ферме выращивались гигантские калифорнийские бурые водоросли. По мнению специалистов, до 50% массы таких водорослей может быть превращено в топливо – природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек.18
В океане растворено огромное количество солей. Может ли соленость быть использована как источник энергии? Может. Большая концентрация соли в океане навела ряд исследователей океанографического института в Калифорнии на мысль о создании установки для получения большого количества энергии. Такую установку можно сконструировать в виде батареи, в которой осуществлялась бы реакция между соленой и несоленой водой.
В
наши дни, когда возросла необходимость
в новых видах топлива, океанографы, химики,
физики, инженеры и технологи обращают
все большее внимание на океан как на потенциальный
источник энергии.
За
время существования нашей
Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана в сравнении с запасами угля на первый взгляд не столь уж и велики. Но зато на единицу массы уран содержит в себе энергии в миллионы раз больше, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить намного меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был более мощным.
В погоне за избытком энергии человек все глубже погружаются в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков. Однако времена меняются. Сейчас, на рубеже тысячелетий начинается новый, этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором сидит, заботился об охране уже сильно поврежденной биосферы. Несомненно, в будущем одновременно с интенсивным развитием энергетики получит широкие права гражданства и экстенсивное направление: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким кпд, экологически чистые, удобные в обращении. Яркий пример тому – быстрый старт электрохимической энергетики, которую, видимо, дополнит энергетика солнечная.
Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идеи, изобретения, достижения естествознания. Это и понятно: энергетика связана буквально со всем, и все тянутся к энергетике, зависят от нее. Энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, «черных дырах», вакууме, – это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать завтрашним днем энергетики.