Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 12:28, контрольная работа
Экология – это наука о взаимоотношениях живых существ между собой и с окружающей их природой, о структуре и функционировании надорганизменных систем.
Термин «экология» в 1866 г. ввел немецкий эволюционист Эрнст Геккель. Э. Геккель считал, что экология должна изучать различные формы борьбы за существование. В первичном значении, экология – это наука об отношениях организмов к окружающей среде (от греч. «oikos» – жилище, местопребывание, убежище).
1. Основные понятия экологии…………………………………………………………………...
1.1.Структура современной экологии……………………………………………………………
1.2.Вид……………………………………………………………………………………………..
1.3.Основы популяционной биологии…………………………………………………………...
1.4.Экология сообществ…………………………………………………………………………..
1.5.Экосистема…………………………………………………………………………………….
1.6.Биосфера ………………………………………………………………………………………
1.7. Гомеостаз……………………………………………………………………………………..
2.Понятие,цели и значение экологической экспертизы………………………………………..
2.1. Принципы экологической экспертизы………………………………………………………
2.2. Субъекты и объекты экологической экспертизы…………………………………………...
2.3. Организация и проведение экологической экспертизы……………………………………
2.4. Общественная экспертиза……………………………………………………………………
2.5. Финансирование экологической экспертизы……………………………………………….
2.6. Полномочия граждан…………………………………………………………………………
2.7. Компетенция органов государства и местного самоуправления………………………….
2.8. Обязанности и права участников экспертизы и их ответственность ……………………
2.9. Ответственность в области экологической экспертизы……………………………………
Список литературы……………………
1.5.Экосистема
Экосистема – это любое единство, включающее все организмы и весь комплекс физико-химических факторов и взаимодействующее с внешней средой. Экосистемы – это основные природные единицы на поверхности Земли.
Учение об экосистемах было создано английским ботаником Артуром Тенсли (1935).
Для экосистем характерен разного рода обмен веществ не только между организмами, но и между их живыми и неживыми компонентами. При изучении экосистем особое внимание уделяется функциональным связям между организмами, потокам энергии и круговороту веществ.
Пространственно-временные
границы экосистем могут
Биогеоценозы. Параллельно с учением об экосистемах развивалось и учение о биогеоценозах, созданное Владимиром Николаевичем Сукачевым (1942).
Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, растительности, животного мира и микроорганизмов, почвы, горной породы и гидрологических условий), имеющая свою особую специфику взаимодействий слагающих компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии.
Биогеоценозы характеризуются следующими чертами:
– биогеоценоз связан с определенным участком земной поверхности; в отличие от экосистемы пространственные границы биогеоценозов не могут быть проведены произвольно;
– биогеоценозы существуют длительное время;
– биогеоценоз – это биокосная система, представляющая собой единство живой и неживой природы;
– биогеоценоз – это элементарная биохорологическая ячейка биосферы (то есть биолого-пространственная единица биосферы);
– биогеоценоз – это арена первичных эволюционных преобразований (то есть эволюция популяций протекает в конкретных естественноисторических условиях, в конкретных биогеоценозах).
Таким образом, как и экосистема, биогеоценоз представляет собой единство биоценоза и его неживой среды обитания; при этом основой биогеоценоза является биоценоз. Понятия экосистемы и биогеоценоза внешне сходны, но, в действительности, они различны. Иначе говоря, любой биогеоценоз – это экосистема, но не любая экосистема – биогеоценоз.
Структура экосистемы
Поддержание жизнедеятельности
организмов и круговорот веществ
в экосистеме возможны только за счет
постоянного притока
В экосистемах наблюдается постоянный поток энергии, которая переходит из одной формы в другую.
Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения.
Гетеротрофные организмы получают энергию при поглощении органических веществ и называются потребителями, или консументами. Существуют консументы первого порядка (растительноядные организмы, или фитофаги), второго порядка (организмы, питающиеся фитофагами, или зоофаги) и высших порядков (хищники и сверх–хищники, паразиты и сверх–паразиты). В большинстве случаев функции консументов в экосистемах выполняют животные. Организмы, которые специализируются на добывании строго определенной пищи, называются монофаги. Организмы, которые могут питаться различной пищей, называются полифаги. Для полифагов характерен широкий спектр питания, включающий основную, второстепенную и случайную пищу.
Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами, или деструкторами. К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:
– некрофаги – трупоеды;
– копрофаги (копрофилы, копротрофы) – питаются экскрементами;
– сапрофаги (сапрофиты, сапрофилы, сапротрофы) – питаются мертвым органическим веществом (опавшими листьями, линочными шкурками); к сапрофагам относятся:
– ксилофаги (ксилофилы, ксилотрофы) – питаются древесиной;
– кератинофаги (кератинофилы, кератинотрофы) – питаются роговым веществом;
– детритофаги – питаются полуразложившимся органическим веществом;
– окончательные минерализаторы – полностью разлагают органическое вещество.
Продуценты и редуценты обеспечивают круговорот веществ в экосистеме: окисленные формы углерода и минеральных веществ превращаются в восстановленные и наоборот; происходит превращение неорганических веществ в органические, а органических – в неорганические.
Пищевые цепи
При последовательной передаче энергии от одних организмов к другим образуются пищевые (трофические) цепи.
Трофические цепи, которые начинаются с продуцентов, называются пастбищные цепи, или цепи выедания. Отдельные звенья пищевых цепей называются трофические уровни. В пастбищных цепях выделяют следующие уровни:
1-й уровень – продуценты (растения);
2-й уровень – консументы первого порядка (фитофаги);
3-й уровень – консументы второго порядка (зоофаги);
4-й уровень – консументы третьего порядка (хищники);
5-й уровень – консументы высших порядков (сверх–хищники, паразиты и сверх–паразиты).
Погибшие организмы и отходы жизнедеятельности каждого уровня разрушаются редуцентами. Трофические цепи, которые начинаются с редуцентов, называются детритные цепи. Детритные цепи являются основой существования зависимых экосистем, в которых органического вещества, произведенного продуцентами, недостаточно для обеспечения энергией консументов (например, глубоководные экосистемы, экосистемы пещер, экосистемы почвы). В этом случае существование экосистемы возможно за счет энергии, содержащейся в мертвом органическом веществе.
Органическое вещество, находящееся на каждом трофическом уровне, может потребляться различными организмами и различными способами. Один и тот же организм может относиться к разным трофическим уровням. Таким образом, в реальных экосистемах пищевые цепи превращаются в пищевые сети.
Ниже приведен фрагмент пищевой сети смешанного леса.
Продуктивность трофических уровней
Количество энергии, проходящее через трофический уровень на единице площади за единицу времени, называется продуктивностью трофического уровня. Продуктивность измеряется в ккал/га·год или других единицах (в тоннах сухого вещества на 1 га за год; в миллиграммах углерода на 1 кв. метр или на 1 куб. метр за сутки и т. д.).
Энергия, поступившая на трофический уровень, называется валовой первичной продуктивностью (для продуцентов) или рационом (для консументов). Часть этой энергии расходуется на поддержание процессов жизнедеятельности (метаболические затраты, или затраты на дыхание), часть – на образование отходов жизнедеятельности (опад у растений, экскременты, линочные шкурки и иные отходы у животных), часть – на прирост биомассы. Часть энергии, затраченная на прирост биомассы, может быть потреблена консументами следующего трофического уровня.
Энергетический баланс трофического уровня может быть записан в виде следующих уравнений:
(1) валовая первичная продуктивность = дыхание + опад + прирост биомассы
(2) рацион = дыхание + отходы жизнедеятельности + прирост биомассы
Первое уравнение применяется по отношению к продуцентам, второе – по отношению к консументам и редуцентам.
Разность между валовой первичной продуктивностью (рационом) и затратами на дыхание называется чистой первичной продуктивностью трофического уровня. Энергия, которая может быть потреблена консументами следующего трофического уровня, называется вторичной продуктивностью рассматриваемого трофического уровня.
При переходе энергии с одного уровня на другой часть ее безвозвратно теряется: в виде теплового излучения (затраты на дыхание), в виде отходов жизнедеятельности. Поэтому количество высокоорганизованной энергии постоянно уменьшается при переходе с одного трофического уровня на последующий. В среднем на данный трофический уровень поступает ≈ 10 % энергии, поступившей на предыдущий трофический уровень; эта закономерность называется правилом «десяти процентов», или правилом экологической пирамиды. Поэтому количество трофических уровней всегда ограничено (4-5 звеньев), например, уже на четвертый уровень поступает только 1/1000 часть энергии от поступившей на первый уровень.
Динамика экосистем
В формирующихся экосистемах
на образование вторичной
Различают следующие формы сукцессий:
– первичные – возникают на ранее незаселенных территориях (например, на незадернованных песках, скалах); биоценозы, первоначально формирующиеся в таких условиях, называются пионерными сообществами;
– вторичные – возникают в нарушенных местообитаниях (например, после пожаров, на вырубках);
– обратимые – возможен возврат к ранее существовавшей экосистеме (например, березняк → гарь → березняк → ельник);
– необратимые – возврат к ранее существовавшей экосистеме невозможен (например, уничтожение реликтовых экосистем; реликтовая экосистема – это экосистема, сохранившаяся от прошлых геологических периодов);
– антропогенные – возникающие под воздействием человеческой деятельности.
Накопление органического
вещества и энергии на трофических
уровнях приводит к повышению
устойчивости экосистемы. В ходе сукцессии
в определенных почвенно-климатических
условиях формируются окончательные клим
В деградирующих (зависимых) экосистемах энергетический баланс отрицательный – энергии, поступившей на низшие трофические уровни, недостаточно для функционирования высших трофических уровней. Такие экосистемы неустойчивы и могут существовать только при дополнительных затратах энергии (например, экосистемы населенных пунктов и антропогенных ландшафтов). Как правило, в деградирующих экосистемах число трофических уровней снижается до минимума, что еще больше увеличивает их неустойчивость.
Антропогенные экосистемы
К основным типам антропогенных
экосистем относятся
Агробиоценозы
– это экосистемы, созданные человеком
для получения
В результате севооборотов в агробиоценозах обычно происходит смена видового состава растений. Поэтому при описании агробиоценоза дается его характеристика на протяжении нескольких лет.
Особенности агробиоценозов:
– обедненный видовой состав продуцентов (монокультура);
– систематический вынос элементов минерального питания с урожаем и необходимость внесения удобрений;
– благоприятные условия
для размножения вредителей в
связи с монокультурой и
– необходимость уничтожения сорняков – конкурентов культурных растений;
– сокращение числа трофических
уровней в связи с
– невозможность
Для поддержания устойчивости
агробиоценозов необходимы дополнительные
затраты энергии. Например, в экономически
развитых странах для производства
одной пищевой калории
Промышленные экосистемы – это экосистемы, формирующиеся на территории промышленных предприятий. Промышленные экосистемы характеризуются следующими особенностями:
– высокий уровень загрязненности (физические, химические и биологические загрязнения);
– высокая зависимость от внешних источников энергии;
– исключительная обедненность видового разнообразия;
– неблагоприятное влияние на смежные экосистемы.
Для контроля за состоянием антропогенных экосистем используются экологические знания.
На первом этапе работы необходима комплексная инвентаризация (паспортизация) антропогенных экосистем. Полученные данные необходимо проанализировать, выявить состояние экосистемы, степень ее устойчивости. В ряде случаев необходимо поставить эксперименты, спланированные для выявления действия комплекса факторов.
На следующем этапе
ведется построение комплексных
моделей, объясняющих имеющееся
состояние экосистемы и служащих
для прогнозирования изменений.
Вырабатываются и исполняются рекомендации
по повышению устойчивости экосистем.
Постоянно ведется
На заключительном этапе работы планируется и осуществляется система наблюдений за состоянием экосистемы – экологический мониторинг (от англ. monitor – подстерегающий). При осуществлении экологического мониторинга используются физико-химические измерительные методы, а также методы биотестирования и биоиндикации.