Автор работы: Пользователь скрыл имя, 08 Января 2012 в 02:03, шпаргалка
1869 г. Эрнст Геккель Экология – это наука об отношениях организмов к ОС , куда относят в широком смысле все условия существования.
Экология включает в себя 3 раздела:
- аутэкология (исследует взаимоотношения со средой отдельных организмов);
- демоэкология (изучает взаимосвязь со средой обитания, популяции живых организмов);
- синэкология (изучает взаимоотношения со средой сообщества и экосистем).
Основные заблуждения в сфере взаимодействия природы и человека (экол. мифы):
«Человек всесилен и могущ».
Мы не можем ждать милости от природы.
О светлом ноосферном будущем. (ноосфера – сфера разума).
Об экологически чистом пространстве и не воздействии человека на природу.
О цене природных ресурсов и плате за пользование ими.
Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиям?
Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession — последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат — оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.
На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, — зарастание небольшого озера с последующим появлением на его месте болота, а затем леса
Вначале по краям озера образуется сплавна — плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений — торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.
Сукцессии
в природе чрезвычайно
Выделяют два главных типа сукцессионных смен: 1 — с участием автотрофного и гетеротрофного населения; 2 — с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д.
По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение незанятого жизнью участка. 2. Миграция на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.
35. Общие закономерности сукцессионного процесса.
Для любой сукцессии, особенно первичной, характерны следующие общие закономерности протекания процесса.
1.
На начальных стадиях видовое
разнообразие незначительно,
2.
С развитием сукцессионного
3.
Уменьшается количество
4.
Интенсифицируются процессы
5.
Скорость сукцессионного
6.
Неизменяемость завершающих (
7. В зрелой стадии климаксного сообщества (не старческой!) биомасса обычно достигает максимальных или близких к максимальным значений. Неоднозначна продуктивность отдельных сообществ на стадии климакса. Обычно считается, что по мере развития сукцессионного процесса продуктивность увеличивается и достигает максимума на промежуточных стадиях, а затем в климаксном сообществе резко уменьшается. Последнее связывают, во-первых, с тем, что в это время максимум первичной продукции потребляется консументами, а во-вторых, экосистема развивает чрезвычайно большую массу ассимиляционного аппарата, что ведет к дефициту освещенности, следствием чего является снижение интенсивности фотосинтеза при одновременном возрастании потерь продуктов ассимиляции на дыхание самих автотрофов.
Эти положения нельзя распространять на все климаксные сообщества. Например, нет реальных предпосылок для увеличения численности гетеротрофов в хвойных лесах (завершающие стадии сукцессий) по сравнению с лиственными (промежуточные стадии). Скорее, в последних больше потребителей зеленой продукции и вероятнее вспышки численности отдельных видов-фитофагов.
Нет также ни теоретических предпосылок,ни фактических данных, которые бы свидетельствовали, что в зрелой климаксной системе, например в еловых лесах, масса хвои достигает чрезмерно (!) высоких значений.
Весь опыт лесоводства свидетельствует о наиболее высокой продуктивности климаксных лесных сообществ (применительно к лесной зоне хвойных или смешанных хвойно-лиственных лесов). В противном случае, с точки зрения получения продукции (древесины), неизбежен вывод о нецелесообразности ориентации на выращивание и сохранение климаксных стадий лесов.
Применительно к другим экосистемам, например луговым, можно согласиться с тем, что возможности получения продукции на климаксной стадии уменьшаются, однако не потому, что сокращается ее нарастание (прирост, продуктивность), а по той причине, что более значительная ее часть отчуждается гетеротрофами в результате образования устойчивых цепей выедания.
Другими словами, продуктивность экосистем на климаксных стадиях сукцессий высока, как правило, максимальна вследствие более полного освоения пространства. Однако возможности снятия человеком первичной продукции лимитируются (иногда до нулевых значений) вследствие включения ее в цепи питания консументов.
36.Энергетика экосистем. Экологические пирамиды.
Энергетика экосистем
Живые организмы, входящие в экосистемы, для своего существования должны постоянно пополнять и расходовать энергию. Растения, как известно, способны запасать энергию в химических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными длинами волн -380-710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спектра. На эту радиацию обычно приходится около 40% общей солнечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолетовой), либо к более длинной (инфракрасной) радиации. С последней обычно связан тепловой эффект.
Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетически активной - это в среднем для земного шара менее 1%. Только наиболее продуктивные экосистемы, такие как плантации сахарного тростника, тропические леса, посевы кукурузы, в оптимальных условиях могут связывать до 3-5% ФАР. В опытах с кондиционированными условиями по всем факторам среды за короткие периоды времени удавалось достичь эффективности фотосинтеза по усвоению солнечной энергии порядка 8-10% ФАР.
Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т. п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конечном счете связаны все возможности ее высвобождения из химических связей органического вещества.
Часть энергии переходит в тело организма-потребителя вместе с увеличивающейся массой (приростом, продукцией). Некоторая доля пищи, а вместе с ней и энергия не усваиваются организмом. Они выводятся в окружающую среду вместе с продуктами жизнедеятельности (экскрементами). В последующем эта энергия высвобождается другими организмами, которые потребляют продукты выделения.
Баланс пищи и энергии для отдельного животного организма можно, таким образом, представить в виде следующего уравнения:
Эп = Эд +Эпр +Эп.в ,
где Эп - энергия потребленной пищи, Эд - энергия дыхания или обеспечения жизнедеятельности организма, включая движение, поддержание температуры тела, сердцебиение и т. п., Эпр - энергия прироста (запасенная в теле организма-потребителя), Эп.в - энергия продуктов выделения (в основном экскрементов).
Количество
энергии, расходуемой организмами
на различные цели, неоднозначно. В
периоды интенсивной
Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выделяют с экскрементами до 70% энергии. Однако при всем разнообразии расходов энергии в среднем максимальны траты на дыхание, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».
Данное правило надо оценивать как относительное, ориентировочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.
Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энергии. Особенно велики потери энергии при переходе с первого трофического уровня на второй, от растений к травоядным животным.