Контрольная работа по предмету: Информатика

Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 16:44, контрольная работа

Описание

Большинство ученых в наши дни отказываются от попыток дать строгое определение информации и считают, что информацию следует рассматривать как первичное, неопределимое понятие подобно множества в математике. Некоторые авторы учебников предлагают следующие определения информации:
Информация – это знания или сведения о ком-либо или о чем-либо.

Работа состоит из  1 файл

1 курс Информатика.doc

— 418.50 Кб (Скачать документ)

 

 

 

1.2. Структура информатики.

 

 

Информатика в широком смысле представляет собой единство разнообразных отраслей науки, техники и производства, связанных с переработкой информации.

 

Информатику в узком смысле можно представить как состоящую из трех взаимосвязанных частей.

 

Информатика как отрасль народного хозяйства состоит из однородной совокупности предприятий разных форм хозяйствования, где занимаются производством компьютерной техники, программных продуктов и разработкой современной технологии переработки информации. Специфика и значение информатики как отрасли производства состоят в том, что от нее во многом зависит рост производительности труда в других отраслях народного хозяйства. В настоящее время около 50% всех рабочих мест в мире поддерживается средствами обработки информации.

 

Информатика как фундаментальная наука занимается разработкой методологии создания информационного обеспечения процессов управления любыми объектами на базе компьютерных информационных систем. В Европе можно выделить следующие основные научные направления в области информатики: разработка сетевой структуры, компьютерно-интегрированные производства, экономическая и медицинская информатика, информатика социального страхования и окружающей среды, профессиональные информационные системы.

 

Информатика как прикладная дисциплина занимается:

 

изучением закономерностей в информационных процессах (накопление, переработка, распространение);

 

созданием информационных моделей коммуникаций в различных областях человеческой деятельности;

 

разработкой информационных систем и технологий в конкретных областях и выработкой рекомендаций относительно их жизненного цикла: для этапов проектирования и разработки систем, их производства, функционирования и т.д.

 

Главная функция информатики заключается в разработке методов и средств преобразования информации и их использовании в организации технологического процесса переработки информации.

 

Задачи информатики состоят в следующем:

 

исследование информационных процессов любой природы;

 

разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;

 

решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

 

Информатика существует не сама по себе, а является комплексной научно-технической дисциплиной, призванной создавать новые информационные техники и технологии для решения проблем в других областях. Комплекс индустрии информатики станет ведущим в информационном обществе. Тенденция к большей информированности в обществе в существенной степени зависит от прогресса информатики как единства науки, техники и производства.

 

6.     Характеристика поколений вычислительной техники.

 

1 поколение.

В 1946г. была опубликована идея использования двоичной арифметики (Джон фон Нейман, А.Бернс) и принципа хранимой программы, активно использующиеся в ЭВМ 1 поколения.

ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.

Дополнительные черты:

устройства ввода-вывода: бумажная перфолента, перфокарты, магнитная лента, и печатающие устройства;

внешняя память: магнитный барабан, перфоленты, перфокарты;

пультовая работа программиста;

программирование в машинных кодах.

ENIAC(Electronic Numerical Integrator and calculator)

 

Эта первая универсальная машина разработана в 1940г. в Пенсильванском университете, закончена к 1946г. Назначение: для военных баллистических расчетов, однако после завершения активно использовалась в научных целях.

Руководители проекта: Джон Моучли, инженер Дж.Эккерт

Занимала комнату 10*15 кв. м, 18000 Эл. ламп, 1500 реле, мощность 150Квт. За секунду выполняла 5000 сложений или 300 умножений.

МЭСМ (Малая Электронно-Счетная Машина )

МЭСМ- 1947-51гг., Киев, руководитель проекта - академик Сергей Алексеевич Лебедев. Работала с 20-ти разрядными числами, со скоростью 50 операций в секунду. Объем памяти - 100 ячеек. Превосходила по своим характеристикам многие зарубежные образцы.

Задачи решались в основном вычислительного характера, содержащие сложные расчеты, необходимые для прогноза погоды, решения задач атомной энергетики, управления летательной техникой и других стратегических задач.

 

2 поколение.

1 июля 1948г. Bell Telefon Laboratory объявила о создании первого транзистора (первая демонстрация была еще раньше — в 1947г). Его разработали американские физики У. Браттейн, Бардин, У.Шокли.

По сравнению с ЭВМ предыдущего поколения улучшились все технические характеристики. Для программирования используются алгоритмические языки, предприняты первые попытки автоматического программирования.

Дополнительные черты:

Внешняя память: магнитный барабан, перфоленты, перфокарты

Пультовая или пакетная работа программиста

Появление мониторов и первых операционных систем

Программирование в машинных кодах и на первых языках программирования(FORTRAN, ALGOL).

 

3-е поколение.

Особенностью ЭВМ 3 поколения считается применение в их конструкции интегральных схем, а в управлении работой компьютера — операционных систем. Появились возможности мультипрограммирования, управления памятью, устройствами ввода-вывода. Восстановление после сбоев взяла на себя операционная система.

Дополнительные черты:

мощные операционные системы

развитые системы программного обеспечения для числовых и текстовых приложений

возможность ограниченного диалога с программистом

возможность удаленного, коллективного доступа

 

IBM SYSTEM 360(IBM CORP) — знаменитое семейство машин, программно совместимых снизу вверх. Машины примерно одинаковой архитектуры, но самых разных рабочих и стоимостных характеристик. До конца 70-х годов этот этап связывается с распространением ЭВМ серии IBM/360. Проблема этого этапа — отставание программного обеспечения от уровня развития аппаратных средств.

ЭВМ ЕС (Единой серии), выпускаемые бывшими странами СЭВ, семейство малых машин СМ ЭВМ.

С середины 60-х до середины 70-х годов важным видом информационных услуг стали базы данных, содержащие разные виды информации по всевозможным отраслям знаний.

Впервые возникает информационная технология поддержки принятия решений. Это совсем новый способ взаимодействия человека и компьютера.

 

4 поколение

Основные черты этого поколения ЭВМ — наличие запоминающих устройств, запуск ЭВМ с помощью системы самозагрузки из ПЗУ, разнообразие архитектур, мощные ОС, объединение ЭВМ в сети.

Начиная с середины 70-х годов с созданием национальных и глобальных сетей передачи данных ведущим видом информационных услуг стал диалоговый поиск информации в удаленных от пользователя базах данных.

 

5 поколение

ЭВМ со многими десятками параллельно работающих процессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельной векторной структурой, одновременно выполняющих десятки последовательных команд программы.

 

6 поколение

Оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой — с сетью из большого числа (десятки тысяч) несложных микропроцессоров, моделирующих структуру нейронных биологических систем.

 

7.     Виды ЭВМ и их применение.

 

Большие ЭВМ

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до ИС со сверх высокой степенью интеграции. Однако их производительность оказалась недостаточной для моделирования экологических систем, задач генной инженерии, управления сложными оборонными комплексами и др.

Большие ЭВМ часто называют за рубежом MAINFRAME и слухи об их смерти сильно преувеличены.

Как правило, они имеют:

 

производительность не менее 10 MIPS (миллионов операций с плавающей точкой в секунду)

основную память от 64 до 10000 МВ

внешнюю память не менее 50 ГВ

многопользовательский режим работы

Основные направления использования — это решение научно-технических задач, работа с большими БД, управление вычислительными сетями и их ресурсами в качестве серверов.

Примеры:

Семейство mainframe: IBM ES/9000 ( Enterprise System), включает более 18 моделей, реализованных на основе архитектуры IBM390.

 

Малые ЭВМ

Малые (мини) ЭВМ — надежные, недорогие и удобные в эксплуатации, обладают несколько более низкими, по сравнению с большими ЭВМ возможностями.

Супер-мини ЭВМ имеют:

емкость основной памяти — 4-512 МВ

емкость дисковой памяти — 2 - 100 ГВ

число поддерживаемых пользователей - 16-512.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в системах несложного моделирования, в АСУП, для управления технологическими процессами.

Родоначальник современных мини-ЭВМ — PDP-11,(programm driven processor -программно-управляемый процессор) фирмы DEC (США).

 

Супер-ЭВМ

Это мощные многопроцессорные ЭВМ с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Достичь такую производительность на одном микропроцессоре по современным технологиям невозможно, в виду конечного значения скорости распространения электромагнитных волн (300000 км/сек), ибо время распространения сигнала на расстояние в несколько миллиметров (размер стороны МП) становится соизмеримым с временем выполнения одной операции. Поэтому суперЭВМ создают в виде высокопараллельных многопроцессорных вычислительных систем.

В настоящее время в мире насчитывается несколько тысяч суперЭВМ, начиная от простеньких офисных Cray EL до мощных Cray 3, SX-X фирмы NEC, VP2000 фирмы Fujitsu (Япония), VPP 500 фирмы Siemens (Германия).

 

 

Микро ЭВМ или персональный компьютер

ПК должен иметь характеристики, удовлетворяющие требованиям общедоступности и универсальности:

малую стоимость

автономность эксплуатации

гибкость архитектуры, дающую возможность адаптироваться в сфере образования, науки, управления, в быту;

дружественность операционной системы;

высокую надежность (более 5000 часов наработки на отказ);

По конструктивным особенностям можно классифицировать ПК так:

Стационарные (настольные)

Переносимые:

портативные

блокноты

карманные

электронные секретари

электронные записные книжки

Большинство из них имеют автономное питание от аккумуляторов, но могут подключаться к сети.

 

Специальные ЭВМ

Специальные ЭВМ ориентированы на решение специальных вычислительных задач или задач управления. В качестве специальной ЭВМ можно рассматривать также электронные микрокалькуляторы. Программа, которую выполняет процессор, находится в ПЗУ или в ОП. Т.к. машина решает, как правило, одну задачу, то меняются только данные. Это удобно (программу хранить в ПЗУ), в этом случае повышается надежность и быстродействие ЭВМ. Такой подход часто используется в бортовых ЭВМ; управлении режимом работы фотоаппарата, кинокамеры, в спортивных тренажерах.

 

8.     Основные блоки персонального компьютера и их назначение.

9.     Последовательность работы блоков персонального компьютера.

 

Существует два основных класса компьютеров: -  цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов; -  аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин. Поскольку в настоящее время, подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер". Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) — заранее заданных, четко определённых последовательностей арифметических, логических и других операций.

 

Любая компьютерная программа представляет собой последовательность отдельных команд. Команда — это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат.

 

Например, у команды "сложить два числа" операндами являются слагаемые, а результатом — их сумма. А у команды "стоп" операндов нет, а результатом является прекращение работы программы. Результат команды вырабатывается по точно определенным для данной команды правилам, заложенным в конструкцию компьютера. Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера.

 

Компьютеры работают с очень высокой скоростью, составляющей миллионы - сотни миллионов операций в секунду. Персональные компьютеры, более чем какой-либо другой вид ЭВМ, способствуют переходу к новым компьютерным информационным технологиям, которым свойственны:               -  дружественный информационный, программный и технический интерфейс с пользователем;

              -  выполнение информационных процессов в режиме диалога с пользователем;

              -  сквозная информационная поддержка всех процессов на основе интегрированных баз данных;

              -  так называемая «безбумажная технология».

Компьютер - это многофункциональное электронное устройство для накопления, обработки и передачи информации. Под архитектурой компьютера понимается его логическая  организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом: 1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определённой последовательности). 2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными). 3. Принцип адресности (основная память структурно состоит из нумерованных  ячеек). ЭВМ, построенные на этих принципах, имеют классическую архитектуру (архитектуру фон Неймана).  Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:               -  центрального процессора;

Информация о работе Контрольная работа по предмету: Информатика