Автор работы: Пользователь скрыл имя, 19 Января 2013 в 20:06, реферат
Строго говоря, можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.
Представителями первого типа являются, например, компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости
- Джозефсоновских переходах.
Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна
2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.
Так вот, для дискретного
логарифма есть эффективный
Его придумал Шор в конце 1994 года. После его статьи и начался взрыв публикаций по КВ. Независимо от него, Алексей Китаев из ИТФ им. Ландау построил квантовый алгоритм для этой и некоторых более общих задач [8].
Идеи у них были разные.
Шор использовал примерно такую идею, она существенно квантовая: рассмотрим базис в фазовом пространстве. Он состоит из классических состояний. Но в линейном пространстве много базисов. Мы можем найти некий оператор, который эффективно строит другой базис; мы можем к нему перейти, сделать там какие-то вычисления, вернуться обратно и получить нечто совершенно отличное от того, что мы имели бы в классическом базисе. Одна из возможностей использовать квантовость состоит в том, что мы строим какой-то странный базис, в нем что-то делаем, возвращаемся обратно и интерпретируем результат. Шор именно эту идею и реализовал. Причем преобразование оказалось такое, которое и в физике, и в математике имеет принципиальное значение - дискретное преобразование Фурье.
Его можно представить в
виде тензорного произведения
операторов, которые действуют на
каждый из кубитов такой
[pic]
Китаев придумал примерно следующее. Есть некоторая ячейка - основной регистр, где мы записываем наши данные нулями и единицами. И еще есть один управляющий кубит. Мы работаем так: у нас реализована процедура умножения на первообразный корень, на квадрат первообразного корня, и т. д.
Управляющий кубит переводим
в некоторое смешанное
Оказывается, что это
Сам процесс вычислений, происходит
так: мы все время умножаем
одну и ту же ячейку на
некие константы, результаты
Для вычисления ДЛ числа,
записанного N битами, нужно потратить
N 3 единиц времени. Вполне
Вторая задача предложена
Гровером (L. Grover) [9]. Рассмотрим базу
данных, содержащую 2N записей. Мы
хотим найти ровно одну запись.
Имеется некая процедура
Интересная задача - создание оптимальных микросхем. Пусть есть функция, которую нужно реализовать микросхемой, и эта функция задана программой, использующей полиномиально ограниченную память. Построение нужной микросхемы с минимальным числом функциональных элементов - задача PSPACE.
Поэтому появление устройств, эффективно решающих PSPACE-задачи, позволило бы единообразно проектировать оптимальные по своим показателям вычислительные устройства обычного типа. Кроме того, в PSPACE попадает большинство задач «искусственного интеллекта»: машинное обучение, распознавание образов и т.д.
Так вот, точно установлено,
что KB находятся где-то между
обычными вероятностными
Есть еще одна область применения КК, где заведомо возможен радикальный выигрыш у существующих технологий. Это моделирование самих квантовых систем.
Давайте посмотрим на такой вопрос: как можно эволюцию квантовой системы изучать на обычном компьютере? Это постоянно делается, так как это задача важна для химии, молекулярной биологии, физики и т.п. Но, за счет экспоненциального роста размерности при тензорном произведении, для моделирования десяти спинов вам нужно оперировать с тысячемерным пространством, сто спинов - это уже конец. А если вспомнить, что в молекуле белка десятки тысяч атомов, то... Там, правда, не всюду существенно именно квантовое моделирование, но в целом ясно, что есть очень серьезные препятствия для моделирования квантовых систем на классических компьютерах.
Так что если создать вычислит
Проблемы создания КК.
Когда начался бум вокруг квантовых вычислений, физики высказывались об этом более чем скептически. Модель квантовых вычислений не противоречит законам природы, но это еще не значит, что ее можно реализовать. К примеру, можно вспомнить создание атомного оружия и управляемый термояд.
А если говорить о КК, надо
отметить одну очень серьезную
проблему. Дело в том, что любая
физическая реализация будет
приближенной. Во-первых, мы не сможем
сделать прибор, который будет
давать нам произвольный
Поэтому сразу возник вопрос, можно ли, хотя бы в принципе, организовать вычисления на ненадежных квантовых элементах, чтобы результат получался со сколь угодно большой достоверностью. Такая задача для обычных компьютеров решается просто - например, за счет введения дополнительных битов.
В случае КК эта проблема гораздо глубже. То место, где возникает новое качество KB по сравнению с обычными вычислениями, - это как раз сцепленные состояния - линейные комбинации базисных векторов фазового пространства. У вас есть биты, но они не сами по себе живут в каких-то состояниях - это был бы просто вероятностный компьютер (компьютер, дающий тот или иной ответ с определенной вероятностью), - а они находятся в некоем смешанном состоянии, причем согласованно-смешанном. Из-за этого в КК нельзя, например, просто взять и скопировать один бит в другой! Обычная интуиция из теории алгоритмов здесь неприменима.
Так что проблема надежности довольно сложна, даже на уровне чистой теории. Те люди, которые активно занимаются KB, активно ее решали и добились успеха: доказано, что, как и в классике, можно делать вычисления на элементах с заданной надежностью сколь угодно точно. Это реализовано с помощью некоего аналога кодов, исправляющих ошибки.
Что касается технической
стороны появляются сообщения,
что создаются реальные
Экспериментальные, в железе, так сказать.
Так что эксперименты есть,
но пока очень далекие от
реальности. Два бита - это и для
классического и для
Чтобы моделировать молекулу белка, нужно порядка ста тысяч кубитов. Для ДЛ, чтобы вскрывать шифры, достаточно примерно тысячи кубитов.
Задача эта возникла слишком
недавно, и не исключено, что
она потребует каких-то
Но можно ожидать
Физической системе,
1. Система должна состоять из точно известного числа частиц.
2. Должна быть возможность
3. Степень изоляции от внешней
среды должна быть очень
4. Надо уметь менять состояние
системы согласно заданной
5. Необходимо иметь возможность выполнять «сильные измерения» состояния системы (то есть такие, которые переводят ее в одно из чистых состояний).
Из этих пяти задач наиболее трудными считаются третья и четвертая. От того, насколько точно они решаются, зависит точность выполнения операций.
Пятая задача тоже весьма неприятна, так как измерить состояние отдельной частицы нелегко.
Физические основы
Итак, что же это за тайное оружие такое - КК? Остроумная идея заключается в использовании для хранения, передачи и обработки информации существенно квантовых свойств вещества. В основном такие свойства проявляют объекты микромира: элементарные частицы, атомы, молекулы и небольшие сгустки молекул, так называемые кластеры. (Хотя, конечно, и в жизни макромира квантовая механика играет важную роль. В частности, только с ее помощью можно объяснить такое явление, как ферромагнетизм.) Одним из квантовых свойств вещества является то, что некоторые величины при измерении (наблюдении) могут принимать значения лишь из заранее определенного дискретного набора. Такой величиной, например, является проекция собственного момента импульса, или, иначе говоря, спина элементарной частицы, на любую заданную ось. Например, у электрона возможно только два значения проекции: +1/2 или –1/2. Таким образом, количество информации, необходимое для сообщения о проекции, равно одному биту.
Записав в классическую
Классической ячейкой может
послужить и спин электрона.
Однако квантовая механика
Для описания поведения
Заранее известно только, с
какой вероятностью мы получим
то или иное значение. В отличие
от обычного компьютера, в квантовом
для представления данных
Квантовую механику не случайно называют иногда волновой механикой. Дело в том, что квантово-механические волновые функции ведут себя подобно световой или какой-либо другой волне. И для волновых функций, благодаря их способности интерферировать, также может быть введено понятие когерентности. Именно это свойство используется в когерентном квантовом компьютере. Набор кубитов представляется когерентными волновыми функциями.
Оказывается, что существует
вполне определенный класс
Из-за того, что для представления
информации используются кубиты