Автор работы: Пользователь скрыл имя, 19 Января 2013 в 20:06, реферат
Строго говоря, можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.
Представителями первого типа являются, например, компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости
- Джозефсоновских переходах.
Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна
2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.
Все существующие на
Сформулирована гипотеза, гласящая,
что каждая конечным образом
реализуемая физическая
Пытаясь осуществить свой замысел, ученые упираются в проблему сохранения когерентности волновых функций кубитов, так как потеря когерентности хотя бы одним из кубитов разрушила бы интерференционную картину. В настоящее время основные усилия экспериментальных рабочих групп направлены на увеличение отношения времени сохранения когерентности ко времени, затрачиваемому на одну операцию (это отношение определяет число операций, которые можно успеть провести над кубитами). Главной причиной потери когерентности является связь состояний, используемых для кубитов, со степенями свободы, не участвующими в вычислениях. Например, при передаче энергии электрона в возбужденном атоме в поступательное движение всего атома. Мешает и взаимодействие с окружающей средой, например, с соседними атомами материала компьютера или магнитным полем Земли, но это не такая важная проблема. Вообще, любое воздействие на когерентную квантовую систему, которое принципиально позволяет получить информацию о каких-либо кубитах системы, разрушает их когерентность. Потеря когерентности может произойти и без обмена энергией с окружающей средой.
Воздействием, нарушающим когерентность,
в частности, является и
Если в области передачи
информации уже созданы
К настоящему времени КК научился вычислять сумму 1+1! Это большое достижение, если учесть, что в виде результата он выдает именно 2, а не 3 и не 0. Кроме того, не следует забывать, что и первые обычные компьютеры были не особенно мощны.
Сейчас ведется работа над двумя различными архитектурами процессоров: типа клеточного автомата и в виде сети логических элементов. Пока не известно о каких-либо принципиальных преимуществах одной архитектуры перед другой. Как функциональная основа для логических элементов квантового процессора более или менее успешно используется целый ряд физических явлений. Среди них - взаимодействие одиночных поляризованных фотонов или лазерного излучения с веществом или отдельными атомами, квантовые точки, ядерный магнитный резонанс и - наиболее многообещающий - объемный спиновый резонанс. Процессор, построенный на последнем принципе, в шутку называют
«компьютером в чашке кофе»
- из-за того, что в нем работают
молекулы жидкости при
Теорию, описывающую явления, лежащие в основе первого типа логических ячеек, называют квантовой электродинамикой в полости или резонаторе. Кубиты хранятся в основных и возбужденных состояниях атомов, расположенных некоторым образом на равных расстояниях в оптическом резонаторе. Для каждого атома используется отдельный лазер, приводящий его в определенное состояние с помощью короткого импульса. Взаимовлияние атомных состояний происходит посредством обмена фотонов в резонаторе. Основными причинами разрушения когерентности здесь служат спонтанное излучение и выход фотонов за пределы резонатора.
В элементах на основе
ионов в линейных ловушках
кубиты хранятся в виде
Сильно отличается от двух предыдущих «компьютер в чашке кофе».
Благодаря достоинствам
Работа логических ячеек
и запись кубитов
В принципе, прибор похож на обычные приборы ядерного магнитного резонанса
(ЯМР) и использует
Ядерные спины в молекулах
жидкости при комнатной
«правильных» спинов. Вот в
этих-то молекулах с
Как уже было сказано, обработка битов осуществляется радиоимпульсами.
Основным логическим
Что касается квантовой
Вместо заключения…
Пока квантовым компьютерам
по плечу только наиболее
Опытные образцы сейчас
Нейла Гершенфельда (Nell Gershenfeld), участвовавшего в создании одной из первых действующих моделей квантового компьютера, необходимо объединить не менее 50-100 кубитов, чтобы решать полезные с практической точки зрения задачи. Интересно, что добавление каждого следующего кубита в квантовый компьютер на эффекте объемного спинового резонанса требует увеличения чувствительности аппаратуры в два раза. Десять дополнительных кубитов, таким образом, потребуют увеличения чувствительности в 1000 раз, или на 60 дБ. Двадцать - в миллион раз, или на 120 дБ...
He исключено, что в
«уничтожения материи», то первый может стать средством «уничтожения информации» - ведь очень часто то, что известно всем, не нужно никому.
Литература, содержащая основную информацию о КК.
1. Feynman R. Int. J. Theor. Phys. 21, 1982.
2. Манин Ю.И. Вычислимое и невычислимое. - М.: Советское радио, 1980.
3. Feynman R. Quantum mechanical computers. // Optics News, February 1985,
11, p.11.
4. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. - Proc. R. Soc. London A 400, 97, 1985.
5. Deutsch D. Quantum computational networks. - Proc. R. Soc. London A 425,
73, 1989.
6. Yao А. С.-С. Quantum circuit complexity. //Proceedings of the 34th
Annual Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1993, p. 352.
7. Shor P.W. Algorithms for Quantum Computation: Discrete log and
Factoring. // Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society
Press, Los Alamitos, CA, 1994, p.124.
8. Китаев A.Ю. Квантовые вычисления:
алгоритмы и исправление
//Успехи математических наук.
9. Grover L. Afast quantum mechanical algorithm for database search.
//Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
1996, pp. 212-219.
10. Kitaev A.Yu. Quantum measurements and the Abelian stabilizer problem. -
LANL e-print quant-ph/9511026, http://xxx.lanl.gov.
11. Shor P.W. Fault-Tolerant Quantum Computation. - LANL e-print quant- ph/9005011, http://xxx.lanl.gov.
12. Bennett С.Н., Bernstein E., Brassard G., Vazirany U. Strengths and
Weaknesses of Quantum Computing. - LANL e-print quant-ph/9701001, http://xxx.lanl.gov, to appear in SIAM J. On Computing.