Автор работы: Пользователь скрыл имя, 19 Ноября 2011 в 11:50, курс лекций
В 1950 году британский математик Алан Тьюринг опубликовал в журнале «Mind» свою работу «Вычислительная машина и интеллект», в которой описал тест для проверки программы на интеллектуальность. Он предложил поместить исследователя и программу в разные комнаты и до тех пор, пока исследователь не определит, кто за стеной - человек или программа, считать поведение программы разумным. Это было одно из первых определений интеллектуальности, то есть А. Тьюринг предложил называть интеллектуальным такое поведение программы, которое будет моделировать разумное поведение человека.
ЭЛЕКТРОННЫЙ КОНСПЕКТ ЛЕКЦИЙ
ПО ДИСЦЕПЛИНЕ
ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
В 1950 году британский математик Алан Тьюринг опубликовал в журнале «Mind» свою работу «Вычислительная машина и интеллект», в которой описал тест для проверки программы на интеллектуальность. Он предложил поместить исследователя и программу в разные комнаты и до тех пор, пока исследователь не определит, кто за стеной - человек или программа, считать поведение программы разумным. Это было одно из первых определений интеллектуальности, то есть А. Тьюринг предложил называть интеллектуальным такое поведение программы, которое будет моделировать разумное поведение человека.
С
тех пор появилось много
ИИ есть область компьютерных наук, занимающуюся исследованием и автоматизацией разумного поведения.
ИИ - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка (более специализированное на решение практических задач).
Рассмотрим основные направления исследований в области искусственного интеллекта.
Разработка интеллектуальных информационных cucmeм или систем, основанных на знаниях. Это одно из главных направлений ИИ. Основной целью построения таких систем являются выявление, исследование и применение знаний высококвалифицированных экспертов для решения сложных задач, возникающих на практике. При построении систем, основанных на знаниях (СОЗ), используются знания, накопленные экспертами в виде конкретных правил решения тех или иных задач. Это направление преследует цель имитации человеческого искусства анализа неструктурированных и слабоструктурированных проблем. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний (БЗ), образующих ядро СОЗ. Частным случаем СОЗ являются экспертные системы (ЭС).
Разработка естественно-языковых интерфейсов и машинный перевод. Проблемы компьютерной лингвистики и машинного перевода разрабатываются в ИИ с 1950-х гг. Системы машинного перевода с одного естественного языка на другой обеспечивают быстроту и систематичность доступа к информации, оперативность и единообразие перевода больших потоков, как правило, научно-технических текстов. Системы машинного перевода строятся как интеллектуальные системы, поскольку в их основе лежат БЗ в определенной предметной области и сложные модели, обеспечивающие дополнительную трансляцию «исходный язык оригинала — язык смысла - язык перевода». Они базируются на структурно-логическом подходе, включающем последовательный анализ и синтез естественно-языковых сообщений. Кроме того, в них осуществляется ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных базах данных (БД). Данное направление охватывает также исследования методов и разработку систем, обеспечивающих реализацию процесса общения человека с компьютером на естественном языке (так называемые системы ЕЯ-общения).
Генерация и распознавание речи. Системы речевого общения создается в целях повышения скорости ввода информации в ЭВМДразгрузки зрения и рук, а также для реализации речевого общещш на значительном расстоянии. В таких системах под текстом поднимают фонемный текст (как слышится).
Обработка визуальной информации. В этом научном направлении решаются задачи обработки, анализа и синтеза изображений. Задача обработки изображений связана с трансформированием графических образов, результатом которого являются новые изображения. В задаче анализа исходные изображения преобразуются в данные другого типа, например в текстовые описания. При синтезе изображений на вход системы поступает алгоритм построения изображения, а выходными данными являются графические объекты (системы машинной графики).
Обучение и самообучение. Эта актуальная область ИИ включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний с использованием процедур анализа и обобщения данных. К данному направлению относятся не так давно появившиеся системы добычи данных (Data-mining) и системы поиска закономерностей в компьютерных базах данных (Knowledge Discovery).
Распознавание образов. Это одно из самых ранних направлений ИИ, в котором распознавание объектов осуществляется на основании применения специального математического аппарата, обеспечивающего отнесение объектов к классам, а классы описываются совокупностями определенных значений признаков.
Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, интеллектуальные системы для изобретения новых объектов. Создание интеллектуальных компьютерных игр является одним из самых развитых коммерческих направлений в сфере разработки программного обеспечения. Кроме того, компьютерные игры предоставляют мощный арсенал разнообразных средств, используемых для обучения.
Программное обеспечение систем ИИ. Инструментальные средства для разработки интеллектуальных систем включают специальные языки программирования, ориентированные на обработку символьной информации (LISP, SMALLTALK, РЕФАЛ), языки логического программирования (PROLOG), языки представления знаний (OPS 5, KRL, FRL), интегрированные программные среды, содержащие арсенал инструментальных средств для создания систем ИИ (КЕ, ARTS, GURU, G2), а также оболочки экспертных систем (BUILD, EMYCIN, EXSYS Professional, ЭКСПЕРТ), которые позволяют создавать прикладные ЭС, не прибегая к программированию.
Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют весьма высокую стоимость, а также недостаточную совместимость с существующими вычислительными средствами.
Интеллектуальные
роботы. Создание интеллектуальных
роботов составляет конечную цель робототехники.
В настоящее время в основном используются
программируемые манипуляторы с жесткой
схемой управления, названные роботами
первого поколения. Несмотря на очевидные
успехи отдельных разработок, эра интеллектуальных
автономных роботов пока не наступила.
Основными сдерживающими факторами в
разработке автономных роботов являются
нерешенные проблемы в области интерпретации
знаний, машинного зрения, адекватного
хранения и обработки трехмерной визуальной
информации.
Понятие интеллектуальной информационной системы.
Интеллектуальная информационная система (ИИС) основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.
Для ИИС характерны следующие признаки :
• развитые коммуникативные способности;
• умение решать сложные плохо формализуемые задачи;
• способность к самообучению;
• адаптивность
Каждому
из перечисленных признаков
К сфере решаемых ИС задач относятся задачи, обладающие, как правило, следующими особенностями:
Характерным признаком интеллектуальных систем является наличие знаний, необходимых для решения задач конкретной предметной области. При этом возникает естественный вопрос, что такое знания и чем они отличаются от обычных данных, обрабатываемых ЭВМ.
Данными называют информацию фактического характера, описывающую объекты, процессы и явления предметной области, а также их свойства. В процессах компьютерной обработки данные проходят следующие этапы преобразований:
•исходная форма существования данных (результаты наблюдений и измерений, таблицы, справочники, диаграммы, графики и т.д.);
•представление на специальных языках описания данных, предназначенных для ввода и обработки исходных данных в ЭВМ;
•базы данных на машинных носителях информации.
Знания являются более сложной категорией информации по сравнению с данными. Знания описывают не только отдельные факты, но и взаимосвязи между ними, поэтому знания иногда называют структурированными данными. Знания могут быть получены на основе обработки эмпирических данных. Они представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.
Для того чтобы наделить ИИС знаниями, их необходимо представить в определенной форме. Существуют два основных способа наделения знаниями программных систем. Первый - поместить знания в программу, написанную на обычном языке программирования. Такая система будет представлять собой единый программный код, в котором знания не вынесены в отдельную категорию. Несмотря на то, что основная задача будет решена, в этом случае трудно оценить роль знаний и понять, каким образом они используются в процессе решения задач. Нелегким делом являются модификация и сопровождение подобных программ, а проблема пополнения знаний может стать неразрешимой.
Второй способ базируется на концепции баз данных и заключается в вынесении знаний в отдельную категорию, т.е. знания представляются в определенном формате и помещаются в БЗ. База знаний легко пополняется и модифицируется. Она является автономной частью интеллектуальной системы, хотя механизм логического вывода, реализованный в логическом блоке, а также средства ведения диалога накладывают определенные ограничения на структуру БЗ и операции с нею. В современных ИИС принят этот способ.
Следует заметить, что для того, чтобы поместить знания в компьютер, их необходимо представить определенными структурами данных, соответствующих выбранной среде разработки интеллектуальной системы. Следовательно, при разработке ИИС сначала осуществляются накопление и представление знаний, причем на этом этапе обязательно участие человека, а затем знания представляются определенными структурами данных, удобными для хранения и обработки в ЭВМ. Знания в ИИС существуют в следующих формах:
•исходные знания {правила, выведенные на основе практического опыта, математические и эмпирические зависимости, отражающие взаимные связи между фактами; закономерности и тенденции, описывающие изменение фактов с течением времени; функции, диаграммы, графы и т. д.);
•описание исходных знаний средствами выбранной модели представления знаний (множество логических формул или продукционных правил, семантическая сеть, иерархии фреймов и т. п.);
•представление знаний структурами данных, которые предназначены для хранения и обработки в ЭВМ;
•базы знаний на машинных носителях информации. Что же такое знания? Приведем несколько определений.
Исследователями в области ИИ даются более конкретные определения знаний.
Информация о работе Лекции по "Интеллектуальным информационным системам"