Организация файловой системы. Понятие "файл", "каталог". Требования к именам файлов и каталогов. Полное имя файла. Типы файлов. Использ

Автор работы: Пользователь скрыл имя, 12 Ноября 2012 в 10:12, контрольная работа

Описание

Файловая система — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла.

Работа состоит из  1 файл

ИНФОРМАТИКА.docx

— 620.88 Кб (Скачать документ)

·     в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).

На следующем рисунке  показано, каковы должны быть связи  между устройствами компьютера согласно принципам фон Неймана (одинарные  линии показывают управляющие связи, пунктир - информационные).

 

Рисунок – Связи между устройствами

Практически все рекомендации фон Неймана впоследствии использовались в машинах первых трех поколений, их совокупность получила название «архитектура фон Неймана». Первый компьютер, в  котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

Транзисторы. ЭВМ 2-го поколения.

Элементной базой второго поколения  стали полупроводники. Без сомнения, транзисторы можно считать одним  из наиболее впечатляющих чудес XX века.

Патент на открытие транзистора  был выдан в 1948 году американцам  Д. Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны.

Первая бортовая ЭВМ для установки  на межконтинентальной ракете – «Атлас»  – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она  потребляла 4 киловатта. В 1961 году наземные компьютеры «стретч» фирмы «Бэрроуз» управляли космическими полетами ракет «Атлас», а машины фирмы IBM контролировали полет астронавта Гордона Купера. Под контролем ЭВМ проходили полеты беспилотных кораблей типа «Рейнджер» к Луне в 1964 году, а также корабля «Маринер» к Марсу. Аналогичные функции выполняли и советские компьютеры.

В 1956 г. фирмой IBM были разработаны  плавающие магнитные головки  на воздушной подушке. Изобретение  их позволило создать новый тип  памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия  развития вычислительной техники. Первые запоминающие устройства на дисках появились  в машинах      IBM-305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об/мин. НА поверхности диска размещалось 100 дорожек для записи данных, по 10000 знаков каждая.

Первые серийные универсальные  ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ  и Японии.

В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан-2» были созданы в 1959-1961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск-32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ. Интегральные схемы. ЭВМ 3-го поколения

Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ  третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга.  Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9´15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

Несмотря на успехи интегральной техники  и появление мини-ЭВМ, в 60-х годах  продолжали доминировать большие машины. Таким образом, третье поколение  компьютеров, зарождаясь внутри второго, постепенно вырастало из него.

Первая массовая серия машин  на интегральных элементах стала  выпускаться в 1964 году фирмой IBM. Эта  серия, известная под названием IBM-360, оказала значительное влияние на развитие вычислительной техники второй половины 60-х годов. Она объединила целое семейство ЭВМ с широким  диапазоном производительности, причем совместимых друг с другом. Последнее  означало, что машины стало возможно связывать в комплексы, а также  без всяких переделок переносить программы, написанные для одной  ЭВМ, на любую другую из этой серии. Таким образом, впервые было выявлено коммерчески выгодное требование стандартизации аппаратного и программного обеспечения  ЭВМ.

В СССР первой серийной ЭВМ на интегральных схемах была машина «Наири-3», появившаяся  в 1970 году. Со второй половины 60-х годов  Советский Союз совместно со странами СЭВ приступил к разработке семейства  универсальных машин, аналогичного системе ibm-360. В 1972 году началось серийное производство стартовой, наименее мощной модели Единой Системы – ЭВМ ЕС-1010, а еще через год – пяти других моделей. Их быстродействие находилась в пределах от десяти тысяч (ЕС-1010) до двух миллионов (ЕС-1060) операций в секунду.

Сверхбольшие интегральные схемы (СБИС). ЭВМ 4-го поколения

Начало 70-х годов знаменует переход  к компьютерам четвертого поколения  – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения  в архитектуре.

Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор.  В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного устройства в 16 килобит  позволит  исключить  100-200 обычных запоминающего интегральных схем.  Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда. В то время в рядовом микропроцессоре уровень интеграции соответствовал плотности, равной примерно 500 транзисторам на один квадратный миллиметр,  при этом достигалась очень хорошая надежность.

К середине 70-х годов положение  на компьютерном рынке резко и  непредвиденно стало изменяться. Четко выделились две концепции  развития ЭВМ. Воплощением первой концепции  стали суперкомпьютеры, а второй – персональные ЭВМ.

Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» и «Крей-2», а также  советские модели «Эльбрус-1» и  «Эльбрус-2». Первые их образцы появились  примерно в одно и то же время  – в 1976 году. Все они относятся  к категории суперкомпьютеров, так  как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость.

В машинах четвертого поколения  сделан отход от архитектуры фон  Неймана, которая была ведущим признаком  подавляющего большинства всех предыдущих компьютеров.

История развития персональных ЭВМ (PC – Personal Computer)

Хотя и персональные компьютеры относятся к ЭВМ 4-го поколения, все  же возможность их широкого распространения, несмотря на достижения технологии СБИС, оставалась бы весьма небольшой.

В 1970 году был сделан важный шаг  на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intеl сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intеl 4004, который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор         Intеl 4004 размером менее 3 см был производительнее гигантских машин 1-го поколения. Правда, возможности Intе1 4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, – он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле. Но рост производительности микропроцессоров не заставил себя ждать.

В 1972 году появился 8-битный микропроцессор Intel 8008. Размер его регистров соответствовал стандартной единице цифровой информации – байту. Процессор Intel 8008 являлся простым развитием Intel 4004.

Но в 1974 году был  создан гораздо более интересный микропроцессор Intel 8080. С самого начала разработки он закладывался как 8-битный чип. У него было более широкое множество микрокоманд (множество микрокоманд 8008 было расширено). Кроме того, это был первый микропроцессор, который мог делить числа. И до конца 70-х годов микропроцессор Intel 8008 стал стандартом для микрокомпьютерной индустрии.

Несколько инженеров  фирмы имели идеи по усовершенствованию 8080. Они покинули Intel, чтобы реализовать их. Ими была организована Zilog Corporation, которая подарила миру микропроцессор Z80. В действительности Z80 являлся дальнейшей разработкой микропроцессора 8080. Было просто увеличено число его команд, что позволило создать и использовать на персональных компьютерах стандартные операционные системы.

В 1974 году небольшой компанией в Альбукерке (штат Нью-Мексико) был выпущен первым микрокомпьютером был «Altair-8800». История его создания такова: Эд Робертс, организовавший в 1968 году компанию MITS (Micro Instrumentation and Telemetry Systems), занимался производством калькуляторов. В 1973 году вследствие жесткой конкуренции со стороны Texas Instruments он оказался на грани банкротства, и вынужден был искать новую нишу на рынке. Робертса заинтересовал микропроцессор 8080, выпущенный Intel в апреле 1974 года, и уверенный в том, что этот микропроцессор может стать основой микрокомпьютера, он сам создал такую машину. Успех Альтаир-8800 заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год.

В 1979 году фирма  Intel выпустила новый микропроцессор Intel 8086/8088. Тогда же и появился первый сопроцессор Intel 8087. Тактовые частоты на которых мог работать микропроцессор Intel-8086/8088: 4.77, 8 и 10 МГц.

Итак, после начала широкого внедрения персональных компьютеров  в повседневную жизнь, продолжилось быстрое развитие вычислительной техники. Остановимся на наиболее важном элементе: микропроцессор – это эффективный  с технологической и экономической  точки зрения инструмент для переработки  возрастающих потоков информации.

 

 

 

3. Прикладные программы векторной и растровой графики. Особенности, преимущества и недостатки векторной и растровой графики.

 

Прикладные программы  растровой графики:

 

Adobe Photoshop – программа является лидером в области графических программ такого рода, но она требует и соответствующих ресурсов от вашего компьютера. Можно считать, что Photoshop – самый совершенный профессиональный редактор растровой графики и самый популярный. Его область – это обработка готовых изображений, таких как отсканированные фотографии. Последние версии уже дополнены компонентом для работы с web-графикой. Вместе с другими программами фирмы Adobe он может составить интегрированный пакет дизайнерских программ, способный удовлетворить самые требовательные запросы.

Microsoft Photo Editor – этот редактор предназначен в основном для работы с фотографиями. Часто он поставляется с пакетом Microsoft Office, поэтому распространен довольно широко.

Microsoft Image Composer – наиболее развитое средство обработки графики из всех программ фирмы Microsoft. Похоже, что по замыслу разработчиков он должен составить конкуренцию редактору Adobe Photoshop в части разработки графики для Интернета. Главное достоинство продукции Microsoft – простота и удобство интерфейса. Этот редактор занимает немного места на диске и очень быстро загружается. Однако для изображений, которые будут использованы в полиграфии, он практически непригоден.

Microsoft Paint – простейший графический редактор, поставляемый вместе с операционной системой Windows, заслуживает упоминания, хотя он обладает минимумом возможностей и вряд ли может быть применен для решения сколько-нибудь серьезной задачи. Этот редактор благодаря своему почтенному возрасту и широкому распространению можно назвать самым известным графическим редактором.

Paintbrush – предшественник Microsoft Paint, известный еще во времена Windows 3.x.

Corel Painter. Очень интересный и мощный растровый инструмент для художественной обработки изображений. Это один из немногих редакторов, в состав которого входят инструменты фрактальной графики.

Paint Shop Pro – одна из лучших shareware-программ, которая, к тому же, поддерживает фильтры от Adobe PhotoShop и очень быстро работает с объемными (>20Мб или Мв) фотографиями. Может импортировать и экспортировать изображения в 40 – 50 разных форматов.

GIMP – свободно распространяемая программа с открытым исходным кодом. Первоначально получила распространение среди любителей ОС Linux. Сейчас доступна и для Windows. По возможностям приближается к Adobe Photoshop. Обладает исключительной наращиваемостью и расширяемостью.

Программы векторной графики:

Практически все современные  графические программы по своему внутреннему устройству во многом имеют  векторную природу. Например, даже примитивнейшая программа – растровый редактор MS Paint – имеет в своем арсенале векторные инструменты, такие как «Прямоугольное выделение». С другой стороны, любая «самая векторная» программа выпускает конечный продукт в виде растровой картинки, выводимой на экран или принтер. Надеюсь, что читатель вскоре свыкнется с этим парадоксом в классификации графических программ.

Информация о работе Организация файловой системы. Понятие "файл", "каталог". Требования к именам файлов и каталогов. Полное имя файла. Типы файлов. Использ