Автор работы: Пользователь скрыл имя, 06 Февраля 2013 в 18:50, контрольная работа
Здесь описаны этапы развития информатики, аппаратная часть компьютеров, оперативное запоминающее устройство и программное обеспечение персональных компьютеров
Раздел А. Этапы развития информатики и ВТ (факты, события, исторические справки, биографии ученых).
Раздел В. Аппаратная часть персональных компьютеров. Оперативные запоминающие устройства персонального компьютера: оперативная память и кэш-память, их назначение и характеристики.
Раздел С. Программное обеспечение персональных компьютеров. Прикладное программное обеспечение персональных компьютеров: табличные процессоры и СУБД и их характеристики.
Список использованной литературы.
Содержание работы
Раздел А. Этапы развития информатики и ВТ (факты, события, исторические справки, биографии ученых).
Раздел В. Аппаратная часть персональных компьютеров. Оперативные запоминающие устройства персонального компьютера: оперативная память и кэш-память, их назначение и характеристики.
Раздел С. Программное обеспечение персональных компьютеров. Прикладное программное обеспечение персональных компьютеров: табличные процессоры и СУБД и их характеристики.
Список использованной литературы.
Раздел А. Этапы развития информатики и ВТ (факты, события, исторические справки, биографии ученых).
Информатика как наука стала развиваться с середины прошлого столетия, что связано с появлением ЭВМ и начинающейся компьютерной революцией.
Появление вычислительных машин в 50-е годы XXвека создало для информатики необходимую ей аппаратную поддержку, или, иначе говоря, благоприятную среду для ее развития как науки. Всю историю информатики принято разбивать на два больших этапа: предыстория и история.
Предыстория информатики такая же древняя, как и история развития человеческого общества. В предыстории выделяют (весьма приближенно) ряд этапов. Каждый из этих этапов характеризуется по сравнению с предыдущим резким возрастанием возможностей хранения, передачи и обработки информации.
Начальный этап предыстории — освоение человеком развитой устной речи. Членораздельная речь, язык стал специфическим социальным средством хранения и передачи информации.
Второй этап — возникновение письменности. Прежде всего резко возросли, по сравнению с предыдущим этапом, возможности по хранению информации. Человек получил искусственную внешнюю память. Организация почтовых служб позволила использовать письменность и как средство для передачи информации. Кроме того, возникновение письменности было необходимым условием для начала «пития наук (вспомним Древнюю Грецию, например). С этим же том, по всей видимости, связано и возникновение понятия натуральное число. Все народы, обладавшие письменностью, владели понятием числа и пользовались той или иной системой счисления.
Третий этап — книгопечатание. Книгопечатание можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим этот этап не столько увеличил возможности по хранению (хотя и здесь был выигрыш: письменный источник — это один-единственный экземпляр, печатная книга — целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении (вспомним «Слово о полку Игореве»)), сколькодоступность информации и точность ее воспроизведения.
Четвертый и последний этап предыстории связан с успехами точных наук (прежде всего математики и физики) и начинающейся в то время научно-технической революцией. Этот этап характеризуется возникновением таких мощных средств связи, как радио, телефон и телеграф, к которым по завершению этапа добавилось и телевидение, кроме средств связи появились новые возможности по получению и восприятию информации — фотография и кино. К ним также можно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски).
С разработкой первых ЭВМ принято связывать возникновение Информатики как науки, начало ее истории. Для такой «привязки» имеются несколько причин. Во-первых, сам термин «информатика» появился на свет благодаря развитию вычислительной техники, и поэтому ну под ним понималась наука о вычислениях (первые ЭВМ большей частью использовались для проведения числовых расчетов), во-вторых, выделению информатики в отдельную науку способствовало такое важное свойство современной вычислительной техники, единая форма представления обрабатываемой и хранимой информации. Вся информация, вне зависимости от ее вида, хранится и обрабатывается на ЭВМ в двоичной форме. Так получилось, что комьпьютер в одной системе объединил хранение и обработку числовой, текстовой (символьной) и аудиовизуальной (звук, изображение) информации. В этом состояла инициирующая роль вычислительной техники при возникновении и оформлении новой науки.
На сегодняшний день информатика представляет собой комплексную научно-техническую дисциплину. Информатика под своим названием объединяет довольно обширный комплекс наук, каждая из которых занимается изучением одного из аспектов понятия информация. Предпринимаются интенсивные усилия ученых по сближению наук, составляющих информатику. Однако процесс сближения этих научных дисциплин идет довольно медленно и создание единой и всеохватывающей науки об информации представляется делом будущего.
Потребность в вычислениях
возникла у человека давно. А по мере
роста потребностей и задач, которые
ставило перед собой
Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она произвела на современников огромное впечатление.
Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.
В 1694 году Лейбниц создает первый в мире арифмометр - машину, предназначенную для выполнения четырех арифметических действий.. В ее основе лежал принцип ступенчатого валика - цилиндра с зубцами разной длины, которые взаимодействовали со счетным колесом. На этом же принципе в 1820 году был построен арифмометр Томаса - первая счетная машина, которая изготовлялась серийно.
Но как не блестяще был век механических арифмометров, но и он исчерпал свои возможности. Людям нужны были более энергичные помощники. Это заставило искать пути совершенствования вычислительной техники, но уже не на механической, а на электромеханической основе.
Огромные заслуги в
деле создания вычислительных машин
принадлежат англичанину Чарльз
В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины, данные в которые вводились с помощью перфокарт. Он основал фирму, давшую впоследствии начало известной фирме по производству вычислительной техники IBM.
К 30-м годам XX века стала
очевидной связь между
Во время второй мировой
войны ускоренными темпами
В 1944 году, американский физик и математик Говард Айкен совместно с группой инженеров фирмы IBM закончил работу над первым вариантом своей универсальной машины, известной под названием “Марк-1”.Машина была передана Гарвардскому университету и эксплуатировалась в течении многих лет. Эта программно управляемая вычислительная машина весом 5 т. и стоимостью 500 тыс. долларов предназначалась для баллистических расчетов ВМС США. Как и машины Цузе, она была построена на электромеханических реле и управлялась при помощи команд, закодированных на бумажной перфоленте. Машина производила умножение 23-значных чисел за 3 с и могла легко настраиваться на решение разнообразных задач оборонного характера, возникающих в ходе войны.
Вообще, всю историю развития вычислительной техники можно разделить на эру простейших машин, эру радиоламп, эру транзисторов и эру интегральных схем. Но в настоящее время более распространено иное деление по периодам развития компьютерной техники - по поколениям машин. Каждому поколению свойственны определенные характеристики.
Предки нынешних машин - ЭВМ первого поколения - ламповые гиганты, вобрали в себя все премудрости электроники 40-х и начала 50-х годов нашего столетия. Жили они не очень долго - до середины 50-х годов. Выпускались же они значительно дольше и эксплуатировались вплоть до 70-х годов.
Характерными чертами машин первого поколения можно считать не только использование электронных ламп в триггерах и вспомогательных схемах, но и некоторые другие особенности. Так, в Кембриджской машине “Эдсак”, построенной в начале 50-х годов, была впервые реализована идея иерархической структуры памяти, т. е. Использовано несколько запоминающих устройств, отличающихся по емкости и быстродействию.
Появление новых ЭВМ неразрывно
связано с достижением
В конце 70-х с развитием микроэлектроники появилась возможность создания следующего поколения машин - четвертого поколения. В целом система теперь представляла собой гигантскую иерархическую конструкцию. Электронные процессоры, как кирпичи, составляли структуру ЭВМ. Каждый процессор имел прямой доступ к устройствам ввода-вывода и был снабжен своим местным индивидуальным запоминающим устройством небольшой емкости, но с колоссальной скоростью работы. Наконец вся вычислительная система управлялась центральным управляющим процессором - самостоятельным ЭВМ. По своей сути же принцип работы ЭВМ оставался прежним, просто повысилась степень интеграции электронных схем и появились большие интегральные схемы (БИС). Применение БИС привело к новым представлениям о функциональных возможностях элементов и узлов ЭВМ. В зависимости от программы одна и та же универсальная БИС могла теперь выполнять широкий круг обязанностей: быть и радиоприемником, и сумматором ЭВМ, и блоком памяти, и телевизором.
И наконец пятое поколение ЭВМ получило развитие в конце 80-х годов. Это были принципиально такие же машины, в которых начали использовать сверхбольшие интегральные системы, что позволило увеличить объем памяти, быстродействие, универсальность и другие характеристики.
В 1960-х годах исследователи начали эксперименты по соединению компьютеров друг с другом и с людьми с помощью телефонных линий, используя фонды Агентства Перспективных Проектов Исследований Министерства Обороны США (U.S Defense Department's Advanced Research Projects Agency- ARPA).
На связывающиеся компьютеры - не только на саму сеть - также возложена ответственность обеспечивать налаживание и поддержание связи. Основной принцип состоял в том, что любой компьютер мог связаться как равный с равным с любым другим компьютером.
Передача данных в сети была организована на основе протокола Internet IP. Протокол IP - это правила и описание работы сети. Этот свод включает правила налаживания и поддержания связи в сети, правила обращения с IP-пакетами их обработки, описания сетевых пакетов семейства IP (их структура и т.п.). Сеть задумывалась и проектировалась так, чтобы от пользователей не требовалось никакой информации о конкретной структуре сети. Для того, чтобы послать сообщение по сети, компьютер должен поместить данные в некий “конверт”, называемый, например, IP, указать на этом “конверте” конкретный адрес в сети и передать получившиеся в результате этих процедур пакетов сеть.
Пока Международная
Примерно 10 лет спустя после появления ARPA net появились Локальные Вычислительные Сети например, такие как Etherne tи др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена Операционная Система UNIX. Эта ОС имела возможность работы в сети с протоколом Internet (IP). В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPA net своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать свои собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе, ведь тогда пользователи из одной сети смогли бы связываться с пользователями другой сети.
Информация о работе Программное обеспечение персональных компьютеров