Автор работы: Пользователь скрыл имя, 11 Января 2011 в 18:24, реферат
В настоящее время накоплен большой опыт создания автоматических систем управления (АСУ) в различных отраслях народного хозяйства. Этот опыт позволяет сделать вывод о том, что резерв повышения эффективности АСУ заключается в увеличении уровня интеллектуализации этих систем, переходе к так называемым “разумным” производственным системам, ориентированным на знания.
Введение 3
1. Новая информационная технология в системах управления производством 4
1.1. Эволюция систем управления производством 4
1.2. ПСИИ – системы, базирующиеся на знаниях 5
2. Представление знаний в ПСИИ 6
3. Архитектура ПСИИ 9
3.1. Структура ПСИИ 9
3.2. База знаний 10
3.3. Механизм вывода 10
3.4. Диалоговый интерфейс 10
3.5. Объяснение и обоснование решений в ПСИИ 11
4. Проектирование ПСИИ 13
4.1. Этапы проектирования и стадии существования ПСИИ 13
4.2. Предметная область и работа с экспертами 14
5. Инструментальные средства для разработки ПСИИ 15
5.1. Программные средства 15
5.2. Технические средства 16
Заключение 18
Литература 19
Семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений. Статическая база знаний мала по сравнению с процедуральной частью. Она содержит так называемые “утверждения“, которые приемлемы в данный момент, но могут быть изменены или удалены в любой момент. Общие знания и правила вывода представлены в виде специальных целенаправленных процедур, активизирующихся по мере надобности. Процедуры могут активизировать друг друга, их выполнение может прерываться, а затем возобновляться. Возможно использование процедур - “демонов“, активизирующихся при выполнении операций введения, изменения или удаления данных.
Средством повышения эффективности генерации вывода в процедуральных моделях является добавление в систему знаний о применении, т.е. знаний о том, каким образом использовать накопленные знания для решения конкретной задачи. Эти знания, как правило, тоже представляются в процедуральной форме.
Главное преимущество процедуральных моделей представления знаний заключается в большей эффективности механизмов вывода за счет введения дополнительных знаний о применении, что, однако снижает их общность. Другое важное преимущество заключено в выразительной силе. Эти системы способны смоделировать практически любую модель представления знаний. Выразительная сила процедуральных систем проявляется в расширенной системе выводов, реализуемых в них. Большинство расширенных форм выводов может быть охарактеризовано понятием “предположение об отсутствии“ и сводится к схеме: “Если А (предварительное условие) – истинно и нет доказательств против В, то предложить В“. Подобные правила вывода оказываются полезными в основном в двух случаях:
Системы представления,
содержащие подобные правила, оказываются
немонотонными, т.е. добавление новых
утверждений может запретить
генерацию вывода, который первоначально
мог быть получен. Добавление новых
фактов может привести к возникновению
противоречий. В некоторых системах кроме
самих утверждений содержатся также записи
причин, по которым были приняты эти утверждения.
При добавлении новых фактов осуществляется
проверка того, сохраняются ли справедливость
утверждений и соответствие причинам.
Рассмотрим
различные формы моделей
Продукционные модели представляют собой набор правил в виде “условие - действие“, где условия являются утверждениями о содержимом БД (фактов), а действия есть некоторые процедуры, которые могут модифицировать содержимое БД. Продукционные модели из-за модульного представления знаний, легкого расширения и модификации нашли широкое применение в экспертных системах.
Другая важная схема представления знаний – семантические сети, представляющие собой направленный граф, в котором вершинам ставятся в соответствие конкретные объекты, а дугам, их связывающим, - семантические отношения между этими объектами. Семантические сети могут использоваться как для декларативных, так и для процедуральных знаний.
Перспективной
формой представления знаний являются
фреймы, которые быстро завоевали
популярность у разработчиков систем
ИИ благодаря своей
Принципиальным методом для логического представления знаний является использование логики предикатов первого порядка (исчисление предикатов). При таком подходе знания о некоторой предметной области могут рассматриваться как совокупность логических формул. Изменения в модели представления знаний происходят в результате добавления или удаления логических формул.
В редукционных
моделях осуществляется декомпозиция
исходной задачи на ряд подзадач, решая
которые последовательно
Логические представления легки для понимания и располагают правилами вывода, необходимыми для операций над ними. Однако в логических моделях представление знаний отношения между элементами знаний выражаются ограниченным набором средств используемой формальной системы, что не позволяет в полной мере отразить специфику предметной области. Недостатком логического представления является также тенденция потреблять большие объемы памяти ЭВМ.
Ряд понятий человеческих знаний оказывается трудно, а иногда и невозможно описать количественно, используя детерминированные или стохастические методы. Трудности возникают при создании моделей не полностью определенных, неточных, нечетких знаний. Это связано с тем, что человеческому мышлению присуща лингвистическая неопределенность; знания и понятия, которыми оперирует человек, часто имеют качественную природу, они ситуативны, бывают неполными. Для формализации знаний такого типа используется аппарат теории нечетких множеств, создание которого связано с именем известного американского ученого Л. Заде.
Неточность, неопределенность или неполнота, заключенные в смысловых значениях или выводах, присущи естественным языкам с их сложной структурой и многообразием понятий. Различают несколько типов неопределенности в прикладных системах ИИ. Первый связан с ненадежностью исходной информации – неточность измерений, неопределенность понятий и терминов, неуверенностью экспертов в своих заключениях.
Второй –
обусловлен нечеткостью языка
В заключение необходимо отметить, что деление моделей представления знаний на декларативные и процедуральные весьма условно, так как в реальных системах представления знаний используются в равной мере элементы и сочетания всех указанных выше форм моделей представления знаний.
Говоря об архитектуре систем ИИ, прежде всего понимают организацию структуры, в рамках которой происходило бы применение знаний и решение проблем в конкретной предметной области. Выбор соответствующей структуры, свойства и функции компонентов систем ИИ, в особенности производственных, определяется и направляется формулируемыми принципами инженерии знаний. На формирование этих принципов в значительной степени оказывают влияние, как специфика предметной области, так и характер задач и функций, решение которых возлагается на ПСИИ.
В зависимости от характера выполняемых функций и области действий эксперты выполняют несколько характерных задач, которые являются типичными. Эти задачи следующие: интерпретация, планирование, управление, проектирование, диспетчирование и мониторинг, прогнозирование, диагностика. А главное – эксперт способен обновлять свои знания, объяснять действия, обосновывать решения, прогнозировать развитие ситуаций, активно взаимодействовать с внешней средой и воспринимать информацию различного характера, получать решения на основе имеющихся знаний, хранить в памяти необходимую информацию и фактографические данные.
Таким образом, чтобы создать систему, работающую со знаниями и способную в какой-то мере заменить эксперта или помочь ему в принятии решений при управлении производством, необходимо заложить в архитектуру системы возможности по реализации названных функций. На рисунке представлена обобщенная структура и компоненты ПСИИ, а также ее окружение.
Структура ПСИИ представленная здесь не универсальна. Ни одна из существующих ПСИИ не содержит все компоненты. Включение тех или иных компонентов и связей в систему в значительной степени определяется ее назначением, функциями, предметной областью, формой взаимодействия с производственным процессом. Некоторые компоненты могут встречаться практически в каждой ПСИИ.
Далее следует описание основных частей ПСИИ.
Основу – ядро любой ПСИИ – составляют база знаний и заложенный в систему механизм вывода решений. Если говорить обобщенно, эти компоненты определяют две основные интеллектуальные характеристики системы: способность хранить знания о чем-то и умение оперировать этими знаниями. Более развитым системам, основанным на знаниях, присуща, также способность обучаться, т.е. приобретать новые знания, расширять БЗ, корректировать знания в соответствии с изменяющимися условиями и ситуацией в предметной области.
При проектировании ПСИИ значительные усилия и время затрачиваются на разработку БЗ, т.е. накопление знаний, создание модели представления знаний, их структурирование, заполнение БЗ и дальнейшее поддержание ее в актуальном состоянии. Прежде чем приступить к проектированию и реализации БЗ, разработчикам необходимо осмыслить и разрешить ряд вопросов, непосредственно связанных с процессом создания БЗ и ПСИИ в целом. Вот круг задач, решаемых на начальном этапе разработки (при условии, что вопрос о целесообразности разработки ПСИИ в этой области решен положительно):
Изучение проблемной области (объекта, задач, целей), т.е. “что представлять в БЗ“ и “для чего представлять“; определение понятия “знание“ в контексте исследуемой проблемной области; выявление источников знаний, активная и кропотливая работа с ними; определение типов знаний для решения задачи; оценка на основе исследования проблемной области и характера знаний пространства поиска решений с целью выбора способа структуризации знаний и метода поиска решений (механизма вывода); определение способа структуризации знаний, т.е. того, “как представлять знания“; выбор способа представления знаний; определение структуры БЗ; определение характера взаимодействия структурных частей БЗ, а также взаимодействия ее с другими компонентами ПСИИ в процессе поиска решений; подготовка к процессу заполнения БЗ.
Характер поиска необходимых знаний в БЗ, способ организации вывода решений определяются стратегией управления интеллектуальной системы. Стратегия управления представляет собой средство, использующее рассуждения или осуществляющее выводы о знаниях, содержащихся в БЗ. Сформулируем более точно функции механизма вывода и стратегий управления.
Механизм вывода реализует общую встраиваемую схему поиска решений. Стратегии управления обеспечивают разнообразное управление в рамках принятой для данной системы схемы механизма вывода. Другими словами, стратегия управления определяет последовательность и содержание действий при реализации механизма вывода. Она может составлять часть метауровня знаний, т.к. является знанием, которое рассуждает о другом знании, содержащемся в системе.
Наиболее часто реализуемый вариант структуры взаимодействия решающих компонентов систем ИИ включает в себя БЗ, рабочую память (глобальную БД) и управляющую структуру. Работа управляющей структуры в общем случае заключается в анализе состояния рабочей памяти и выявлении по описанию характера и типа данных в рабочей памяти в БЗ знаний (правил, объектов или фактов), соотносимых с этим описанием. Т.е. в БЗ определяется некий подходящий блок знаний (или набор блоков), готовый работать в соответствии с текущими данными рабочей памяти.
Процесс реализации стратегии вывода проходит через четыре основных стадии: выбор, сопоставление, разрешение конфликтов, выполнение.
Производственные системы ИИ функционируют в подавляющем большинстве реализаций, а интерактивном режиме с пользователями, поэтому они должны обладать дружелюбным интерфейсом, позволяющим человеку легко и в удобной для него форме взаимодействовать с ее компонентами. Общение человека и ПСИИ могут обеспечивать и реализовывать различные программные и технические средства ввода и вывода информации. Взаимодействие пользователя с компьютером возможно посредством речи, сенсорного экрана введения текстов на естественном языке, изображений, работы с графикой, полиэкранным дисплеем, манипулятором типа ”мышь”.
Естественной формой общения человека с ПСИИ является язык, на котором говорит. В настоящее время одной из проблем ИИ является развитие систем понимания ЕЯ. Языки, с помощью которых пользователь может общаться с машиной, можно разделить на три класса: регламентированные, профессионально – ориентированные и естественные.
При регламентированном языке система сама выбирает вариант диалога и ведет его. Пример - ”меню” и анкетный язык. Преимущества такого способа общения – простота и надежность. Однако жестко запланированный и заложенный в память системы сценарий диалога не может предусмотреть все возможные варианты диалога.
Более совершенной формой общения пользователя с системой является общение на ограниченном ЕЯ. Лексика здесь ограничена предметной областью, к которой язык отнесен. Эта форма общения исключает различные формы одного и того же слова и пользователь не может выйти за рамки словарного запаса данной системы.
Информация о работе Производственные системы с искуственным интелектом