Производственные системы с искуственным интелектом

Автор работы: Пользователь скрыл имя, 11 Января 2011 в 18:24, реферат

Описание

В настоящее время накоплен большой опыт создания автоматических систем управления (АСУ) в различных отраслях народного хозяйства. Этот опыт позволяет сделать вывод о том, что резерв повышения эффективности АСУ заключается в увеличении уровня интеллектуализации этих систем, переходе к так называемым “разумным” производственным системам, ориентированным на знания.

Содержание

Введение 3
1. Новая информационная технология в системах управления производством 4
1.1. Эволюция систем управления производством 4
1.2. ПСИИ – системы, базирующиеся на знаниях 5
2. Представление знаний в ПСИИ 6
3. Архитектура ПСИИ 9
3.1. Структура ПСИИ 9
3.2. База знаний 10
3.3. Механизм вывода 10
3.4. Диалоговый интерфейс 10
3.5. Объяснение и обоснование решений в ПСИИ 11
4. Проектирование ПСИИ 13
4.1. Этапы проектирования и стадии существования ПСИИ 13
4.2. Предметная область и работа с экспертами 14
5. Инструментальные средства для разработки ПСИИ 15
5.1. Программные средства 15
5.2. Технические средства 16
Заключение 18
Литература 19

Работа состоит из  1 файл

производственные системы с искуственным интелектом.doc

— 152.00 Кб (Скачать документ)

Популярность  Лиспа объясняется тем, что он с помощью довольно простых конструкций  позволяет писать сложные и изящные  системы обработки символьной информации. Правда все Лисп - системы имеют низкую вычислительную эффективность.

Существенной  особенностью языка Лисп является то, что здесь ”данные” и ”программы”  внешне ничем не отличаются друг от друга. Это дает возможность писать на Лиспе программы манипулирующие не только ”данными”, но и ”программами”. Именно данное свойство позволяет Лиспу стать изящным средством программирования систем ИИ.

Язык программирования FRL (Frame Representation Language). Относится к классу фрейм - ориентированных языков. Фрейм в FRL – это совокупность поименованных, ассоциативных списков, содержащая до пяти уровней подструктур. Подструктурами фреймов могут быть слоты, аспекты, данные, комментарии и сообщения.

Важным свойством  FRL является наличие в нем встроенного механизма ”наследования свойств”. Т.е. все понятия предметной области в БЗ  организовываются в виде иерархической классификационной системы, где каждое общее (родовое) понятие связывается с более конкретным (видом). Применяется механизм наследования свойств.

На сегодняшний  день большинство FRL - систем написаны на Лиспе.

Язык программирования Пролог. Наиболее известные Пролог – системы: MProlog, CProlog, Prolog-2, Arity Prolog, Turbo Prolog, Strawberry Prolog. Пролог все чаще в последнее время стал привлекаться к разработке ЭС. Математической основой этого языка являются исчисление предикатов преимущественно первого порядка, метод резолюций Робинсона, теория рекурсивных функций. За счет наличия большого набора встроенных предикатов язык Пролог можно отнести к универсальным языкам программирования и даже к языкам системного программирования. Важнейшей особенностью языка является наличие реляционной базы данных.

Язык программирования OPS. Язык относится к числу продукционных. Являясь универсальным языком, он в первую очередь предназначен для разработки систем ИИ, и, в частности экспертных систем. Архитектура языка OPS типична для продукционных систем: база правил, рабочая память и механизм вывода. Отличительные черты семейства языков OPS: программное управление стратегией вывода решений, развитая структура данных и принципиальная эффективность реализации.

Язык программирования Рефал (рекурсивных функций алгоритмический  язык). Это машинно-независимый алгоритмический  язык, ориентированный на так называемые ”символьные преобразования”: перевод с одного языка на другой, алгебраические выкладки  и т.п. Рефал – универсальный метаязык для преобразования объектов языковой природы. Важнейшим приложением Рефала является его использование в качестве метаязыка для построения системных макрокоманд и специализированных языков. В качестве конкретных областей применения Рефала в разработке ПСИИ следует отметить, в частности, создание специализированных языков общения с ЭВМ, автоматическую генерацию программ, перенос программ на языки высокого уровня и их адаптацию при переходе от одного типа ЭВМ к другому.

Проблема выбора программных инструментальных средств  вызывает бурные дискуссии между  сторонниками специализированных языков ИИ и традиционных языков высокого уровня. Над решением данной проблемы работает целый ряд компаний, специализирующихся на ИИ и коммерческих ЭС, а также большинство крупных фирм по производству ЭВМ.

5.2. Технические средства

Одним из важных факторов, стимулирующих развитие систем ИИ и их внедрение на производстве, является техническая база, на которой они могут быть реализованы.

Производственные  системы ИИ создаются сегодня  практически на всем диапазоне средств  вычислительной техники: от больших  ЭВМ до персональных компьютеров  и Лисп – машин.

Реализованные на базе Лисп – процессоров ЭВМ, наиболее часто называют первыми специализированными машинами, использующими концепции искусственного интеллекта

Такими машинами являются ЭВМ типов Series III фирмы Lisp Machine, LM-2 от Symbolics

К числу факторов, сдерживающих распространение систем ИИ, относят такие недостатки первых Лисп – процессоров, как значительные габаритные размеры и высокая стоимость, а также отсутствие возможности программирования на языках типа Фортран.

В европейских  странах, где в качестве основного  языка ИИ получил распространение Пролог, выпускаются Пролог – машины. Использование компьютеров, рассчитанных на эффективное выполнение программ, написанных на Лиспе или Прологе, сдерживает развитие техники ЭС и их проникновение в промышленную сферу. Для того чтобы дать толчок прогрессу техники ЭС, необходимо сделать их более удобными и простыми для реализации на традиционных средствах вычислительной техники.

Важным импульсом  для нового этапа исследований в  области ИИ послужила программа  создания ЭВМ пятого поколения –  интеллектуальных ЭВМ. Отличительными чертами этих ЭВМ являются: новая технология производства, отказ от традиционных языков высокого уровня в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Лисп, Пролог), отход от архитектуры фон Неймана, новые способы ввода – вывода (распознавание речи, образов, синтез речи, естественный язык), автоматизация решения задач, манипулирование знаниями. ЭВМ пятого поколения призваны стать системами обработки знаний, обладающими человеко-машинными интерфейсами высокого уровня.

Одной из основных целей японской программы пятого поколения компьютерных систем является подкрепление классической обработки  данных обработкой знаний. Эта цель требует глубокого проникновения  в такие человеческие процессы, как описание, решение, осознание задачи, а также в тесно связанные предметные области представления знаний, обработки знаний, диалоговой обработки, анализа и синтеза текстов на естественном языке. За последние годы были созданы специальные логические теории, новые языки логического программирования, языки представления и обработки знаний, а также архитектуры систем.

Выполнение указанной  программы позволит осилить следующие  вехи:

Прикладной программист  сможет развивать собственные прикладные программы; Эксплуатация вручную описанной и автоматически сгенерированной программы будет облегчена; Качество решения проблем (наиболее важная цель) существенно возрастает, т.к. пользователи сосредоточат свои усилия только на процессе принятия решения, и не будут отвлекаться на подробности обработки данных; Создание программного обеспечения станет технической дисциплиной; Системы станут способными распознавать ошибки, несостоятельность и противоречия, в большинстве случаев смогут самостоятельно исправлять ошибки и автоматически осуществлять решения; Системы будут содержать эффективные инструменты для приобретения знаний (т.е. передачи знаний от эксперта системе).

Японские специалисты  считают, что основными областями  применения компьютерных систем пятого поколения будут:

Системы автоматического  перевода текстов на естественных языках со словарным запасом более 100 тыс. слов и точностью перевода около 90%; ЭС в различных прикладных областях с 5 тыс. различных слов и 10 тыс. правил вывода; Базирующееся на знаниях программное обеспечение; Системы автоматизированного проектирования, управления, инженерного проектирования, планирование и роботизация; Базирующиеся на знаниях системы принятия решений для специфических прикладных областей. 
 
 

 

Заключение

 Если в 60- – 70-е годы число ПСИИ было незначительным, и существовали эти системы только на стадии исследовательского прототипа, то в 80-е годы систем, базирующихся на ИИ и находящихся на различных стадиях производства около 500, а в настоящее время еще больше.

 Это говорит  о том, что эти системы ИИ плотно вошли в нашу жизнь, проникли во все  ее уголки и приносят немалую пользу и их применение может и приводит к существенному экономическому эффекту.

 Например, одной  из областей использования идей и  методов искусственного интеллекта в сфере промышленного производства является область создания промышленных роботов с элементами ИИ.

 Также при  имеющейся на сегодняшний день аппаратной и программной базе наблюдается  возрождение кибернетики, причем вполне успешно – моделирования человеческого мозга идут полным ходом. 
 

 

Литература

  1. Р.А. Алиев, Н.М. Абдикеев, М.М. Шахназаров  Производственные системы с искусственным интеллектом. - М.: Радио и связь, 1990. - 264 с.
  2. Ивахненко А.Г. Самообучающиеся системы. – Киев, 1982 – 143 с.
  3. Майклсен Р., Мичи Д., Буланже А. Экспертные системы. Реальность и прогнозы искусственного интеллекта: М.: Мир, 1987.-182 с.

Информация о работе Производственные системы с искуственным интелектом