Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 19:30, контрольная работа
Опишіть значення понять “модель”, ”математична модель”. Перелічіть основні типи математичних моделей і коротко їх охарактеризуйте.
Перейти в режим написання та редагування програм (QB – верхнє вікно; Gwbasic – набирати оператори із зазначення номера рядка.)
Набрати програму. Символ ‘ та коментарі, що стоять після нього, набирати не обов’язково:
Програма 1:
10 CLS ‘очищення екрану монітора
20 FOR I = 1 TO 10 ‘початок циклу для повторення наступних функцій від 1 до 10 разів
30 PRINT RND(1) ‘оператор друкування на моніторі результату функції RND(1)
40 NEXT I ‘повернення на початок циклу після кожного виконання функції з 1-ої до 10-ої та закінчення циклу після завершення 10-ої операції
50 END ‘кінець програми
Запустити програму командою RUN. Отримаємо ту ж саму послідовність псевдовипадкових чисел.
Якщо перед виконанням цієї процедури у безпосередньому режимі виконати оператор RANDOMIZE TIMER, чи записати його у програмі, наприклад у рядку під номером 15:
15 RANDOMIZE TIMER
то отримувані значення будуть різними і не будуть повторюватися.
Якщо необхідно отримати випадкові числа в іншому діапазоні, результат функції RND(1) потрібно помножити на безпосередню ширину діапазону. Наприклад, якщо відомо, що значення пробігів автомобілів з початку експлуатації рівномірно розподілені в діапазоні від 0 до 500 000 км., то для моделювання цих значень необхідно помножити результат функції RND(1) на 500 000:
Виконати декілька разів оператор PRINT RND(1) * 500000.
Якщо необхідно отримати випадкові числа, рівномірно розподілені в діапазоні від 100 до 500 000, то результат функції RND(1) потрібно помножити на ширину діапазону – а саме (500 000 – 100). Кожен раз будемо отримувати випадкові числа в діапазоні від 0 до 499 900. Для забезпечення необхідного діапазону від 100 до 500 000 потрібно до кожного отриманого результату додавати 100. Таким чином отримуватимемо результати від 100 до 500 000.
Задача
Умови задачі:
Обчислити мінімально необхідну кількість універсальних постів складально - розбиральних та регулювальних робіт поточного ремонту та визначити, якою буде оптимальна кількість постів для заданих умов роботи підприємства.
Вихідні дані:
Назва показника |
Значення показника для варіант |
Середній річний пробіг автомобіля, км |
77000 |
Трудомісткість постових робіт ПР, люд.год/1000 км |
3,4 |
Кількість робочих днів зони ПР на рік |
305 |
Кількість змін роботи зони ПР на добу |
2 |
Тривалість зміни в годинах |
8 |
Середня кількість робітників на посту ПР |
2 |
Коефіцієнт використання робочого часу |
0,70 |
Кількість обслуговуваних автомобілів |
250 |
Втрати за зміну від простою автомобіля, грн: |
285 |
- невиконана транспортна робота, грн. за зміну |
250 |
- заробітна плата водія, який не здійснював перевезення, грн. за зміну |
35 |
Втрати за зміну від простою поста, грн. |
186 |
- плата за приміщення, у якому розташовано пост, опалення, освітлення тощо, грн. за добу |
16 |
- приведені затрати на будівництво та оснащення поста, грн. за добу |
80 |
- амортизаційні відрахування на поновлення обладнання поста, грн. за добу |
20 |
- заробітна плата слюсарів за невиконану роботу за зміну простою, грн. |
35×2 |
Розв’язання задачі:
Для обчислення мінімально необхідної кількості постів поточного ремонту, обчислення показників системи масового обслуговування, моделювання пробігів автомобілів, моментів виникнення потреб у поточному ремонті, трудомісткості поточного ремонту та тривалості його виконання застосовано програму, розроблену на кафедрі ВССТ – zsmo.exe.
Після введення вихідних даних програма обчислює коефіцієнт завантаження системи масового обслуговування та визначає мінімально необхідну кількість постів поточного ремонту. Програма визначає середню довжину черги автомобілів, що очікують ремонту, та середню кількість вільних постів для різних варіантів їх кількості, починаючи з визначеної мінімально необхідної кількості за наступними формулами:
,
,
,
де - середня довжина черги автомобілів;
- середня кількість вільних обслуговуючих апаратів (постів поточного ремонту).
- імовірність того, що всі
обслуговуючі апарати вузла
- кількість обслуговуючих
- номер стану системи масового обслуговування (число вимог в системі - в накопичувачі і в вузлі обслуговування);
- число обслуговуваних
- завантаження системи масового обслуговування;
- інтенсивність заявок, які надходять від одного обслуговуваного елемента;
- інтенсивність обслуговування одним обслуговуючим апаратом.
У процесі роботи програми обчислюється мінімально необхідна кількість постів, виходячи з умови, що не повинен бути більшим від одиниці – тоді система масового обслуговування не буде справлятися із заявками. Починаючи з цієї мінімальної кількості, та збільшуючи її кожного разу на 1, обчислюються середня довжина черги автомобілів та середня кількість не зайнятих роботою вільних постів поточного ремонту, втрати від простою постів, від простою автомобілів та сумарні втрати:
,
де , - втрати, пов'язані з простоєм відповідно одного автомобіля в очікуванні обслуговування та одного поста за зміну.
- сумарні втрати – критерій оптимальності.
Результати обчислень заносимо в таблицю:
Кількість постів |
Середня довжина черги автомобілів |
Середня кількість постів, що простоюють |
Втрати від простою автомобілів, грн. |
Втрати від простою постів, грн. |
Сумарні втрати, грн. |
9 |
12,989 |
0,253 |
3702,019 |
47,062 |
3749,08 |
10 |
4,662 |
0,945 |
1328,797 |
175,893 |
1504,690 |
11 |
1,885 |
1,843 |
537,399 |
342,817 |
880,217 |
12 |
0,828 |
2,804 |
236,093 |
521,543 |
757,637 |
13 |
0,376 |
3,787 |
107,339 |
702,425 |
811,762 |
14 |
0,172 |
4,779 |
49,023 |
889,004 |
938,027 |
15 |
0,077 |
5,776 |
22,099 |
1074,339 |
1096,439 |
За результатами обчислень будуємо графічну залежність втрат від кількості постів ПР:
Рис. Результати визначення оптимальної кількості постів: Sопт = 12
Висновок Для заданих умов роботи АТП оптимальна кількість постів ПР Sопт = 12. При цьому сумарні втрати будуть мінімальними – 757,637 грн.
Список використаної літератури
1. Применение экономико-математических методов и моделей при проектировании технологического процесса обслуживания и ремонта автомобилей: Уч. пособие /И.А.Луйк. -К.:УМК ВО, 1989.-80 с.
2. Галушко В.Г. Вероятностно-
3. Математическое моделирование /Под ред. Дж. Эндрюса и Р. Мак-Лоуна. -М.: Мир, 1979, 276 с.
4. САПР: Система автоматизированного проектирования: Уч. пособие для втузов. В 9 кн. Кн. 4. Математические модели технических объектов /В.А.Трудоношин, Н.В.Пивоварова; Под ред. И.П.Норенкова.-Мн.: Выш.шк., 1988.-159 с.
5. Литвтинов А.С.
6. Основы технической диагностики. В 2-х книгах. Кн. 1. Модели объектов, методы и алгоритмы диагноза. Под ред. П.П. Пархоменко. М., "Энергия", 1976. 464 с.
7. Дьяконов В.П. Справочник по алгоритмам и программам на языке бейсик для персональных ЭВМ: Справочник. -М., Наука. Гл. ред. физ-мат. лит., 1989. -240 с.
8. Компьютер обретает разум: Пер. с англ. /Под ред. и с предисловием В.Л.Стефанюка. -М.: Мир, 1990. -240 с.
Информация о работе Контрольна робота з «Математичне моделювання технологічних процесів»