Автор работы: Пользователь скрыл имя, 15 Января 2012 в 21:42, курс лекций
Лекция 1
Общесистемный подход к моделированию экологических систем
Лекция 3
Модели экологических сообществ
Вайс
А.А.
КУРС
ЛЕКЦИЙ
Математика.
Системный анализ
Красноярск,
2011
Часть 1
Экология
математическая
Лекция 1
Общесистемный подход к моделированию экологических систем
(2 часа)
Экология
– развивающаяся
Фундаментом математической экологии является математическая теория динамики популяций (См. Статью «Популяций динамика»), в которой фундаментальные биологические представления о динамике численности видов животных, растений, микроорганизмов и их взаимодействии формализованы в виде математических структур, в первую очередь, систем дифференциальных, интегро-дифференциальных и разностных уравнений.
Любая экосистема состоит из нелинейно взаимодействующих подсистем, которые можно упорядочить в некоторую иерархическую структуру. По мере объединения компонентов, или подмножеств, в более крупные функциональные единицы, у этих новых единиц возникают свойства, отсутствующие у составляющих ее компонентов. Такие качественно новые «эмерджентные» свойства экологического уровня или экологической единицы не являются простой суммой свойств компонентов. Следствием является невозможность изучения динамики сложных экосистем путем их иерархического расчленения на подсистемы и последующего изолированного изучения этих подсистем, поскольку при этом неизбежно утрачиваются свойства, определяемые целостностью изучаемой системы.
Воздействие внешних факторов на экологическую систему также нельзя рассматривать независимо друг от друга, так как комбинированное действие нельзя свести к сумме действующих факторов. Тем более сложной задачей является количественное описание реакции сложной системы на комплексное воздействие различных факторов.
Все эти обстоятельства приводят к невозможности описать сложные экосистемы с помощью простых редуцированных «механизменных» моделей. Необходимы либо сложные имитационные модели, объединяющие в одну сложную систему на модельном уровне знания об элементах системы и типах их взаимодействия, либо упрощенные интегрированные модели типа «воздействие – отклик», интегрирующие данные большого числа наблюдений над экосистемой.
Имитационные компьютерные модели включают представления о компонентах систем и их взаимосвязях как в виде собственно математических объектов: формул, уравнений, матриц, логических процедур, так и в виде графиков, таблиц, баз данных, оперативной информации экологического мониторинга. Такие многомерные модели позволяют объединить разнородную информацию об экологической или эколого-экономической системе, «проигрывать» различные сценарии развития и вырабатывать на модели оптимальные стратегии управления, что невозможно делать на реальной системе в силу ее уникальности и ограниченности времени.
Имитационный подход, также как и моделирование экосистем с помощью функций отклик, требуют высоко развитой вычислительной техники, поэтому математическая экология как развитая и практически используемая наука получила распространение только в последние десятилетия 20 века. Широкое применение математического аппарата стимулировало развитие теоретической экологии. Построение математической моделей требует упорядочивания и классификации имеющейся информации об экосистемах, приводит к необходимости планировать систему сбора данных и позволяет объединить на содержательном уровне совокупность физических, химических и биологических сведений и представлений об отдельных происходящих в экосистемах процессах.
Общесистемный подход к моделированию экологических систем. При построении моделей экосистем применяют методы общесистемного анализа. В первую очередь это – выделение из системы отдельных структурных элементов, таких как живые и косные компоненты, среди живых – трофические уровни, виды, возрастные или половые группы, взаимодействие которых и будет определять поведение всей системы. Другой важный элемент – установление характера процессов, в которых участвует каждый элемент (процессы размножения и роста, взаимодействия типа хищничества, конкуренции и т.д.) Часто в экологическом моделировании используются балансовые компартментальные модели, когда рассматриваются потоки вещества и энергии между составляющими модель компартментами, содержание «вещества» в каждом из которых и представляет собой отдельную переменную системы.
Необходимость
описывать экологические
Широко используется принцип изоморфизма, позволяющий сходными математическими уравнениями описывать системы, разные по своей природе, но одинаковые по структуре и типу взаимодействия между элементами, их составляющими.
Работа с имитационной моделью требует знания величин параметров модели, которые могут быть оценены только из наблюдения и эксперимента. Часто приходится разрабатывать новые методики наблюдений и экспериментов с целью установления факторов и взаимосвязей, знание которых позволяет выявить слабые места гипотез и допущений, положенных в основу модели. Весь процесс моделирования – от построения моделей до проверки предсказанных с ее помощью явлений и внедрения полученных результатов в практику – должен быть связан с тщательно отработанной стратегией исследования и строгой проверкой используемых в анализе данных.
Это положение, справедливое для математического моделирования вообще, особенно важно для такой сложной науки как экология, имеющей дело с разнообразными взаимодействиями между огромным множеством организмов и средой их обитания. Почти все эти взаимодействия динамические в том смысле, что они зависят от времени и постоянно меняются, причем, как правило, включают в себя положительные и отрицательные обратные связи, то есть являются нелинейными. Сложность экосистем усугубляется с изменчивостью самих живых организмов, которая может проявляться и при взаимодействии организмов друг с другом (например, в процессе конкуренции или хищничества), и в реакции организма на изменения окружающей среды. Эта реакция может выражаться в изменении скорости роста и воспроизведения и в различной способности к выживанию в сильно различающихся условиях. К этому добавляются происходящие независимо изменения таких факторов среды как климат и характер мест обитания. Поэтому исследование и регулирование экологических процессов представляет собой исключительно сложную задачу.
Экспериментальное
и натурное наблюдение экологических
процессов осложняется их длительностью.
Например, исследования в области земледелия
и садоводства связаны главным образом
с определением урожайности, а урожай
собирают раз в год, так что один цикл эксперимента
занимает год и более. Чтобы найти оптимальное
количество удобрений и провести другие
возможные мероприятия по окультуриванию,
может понадобиться несколько лет, особенно
когда необходимо рассматривать взаимодействия
между экспериментальными результатами
и погодой. То же касается процессов, проходящих
в аквакультуре, например, при разработке
оптимальных режимов содержания рыбоводных
прудов. В лесоводстве из-за длительности
круговорота урожаев древесины самый
непродолжительный эксперимент занимает
25 лет, а долговременные эксперименты
могут длиться от 40 до 120 лет. Аналогичные
временные масштабы необходимы для проведения
исследований с другими природными ресурсами.
Поэтому математическое моделирование
является необходимым инструментом в
экологии, природопользовании и управлении
природными ресурсами.
Лекция 2
Классы задач и математический аппарат
(2 часа)
Современные
математические модели в
Чем лучше изучен сложная экологическая система, тем более полно может быть обоснована его математическая модель. При условии тесной связи наблюдений, экспериментального исследования и математического моделирования математическая модель может служить необходимым промежуточным звеном между опытными данными и основанной на них теорией изучаемых процессов. Для решения практических задач можно использовать модели всех трех типов. При этом особенно важны вопросы идентифицируемости (соответствия реальной системе) и управляемости таких моделей.
Обычно при математическом моделировании задача состоит в том, чтобы получить обоснованный прогноз кинетики компонентов экологической системы. При этом делаются различные исходные предположения и преследуются соответствующие цели при изучении моделей, которые один из пионеров математической биологии А.А. Ляпунов сформировал следующим образом (Ляпунов, 1968, 1972).
А. Биологические характеристики компонентов неизменны, так же как и взаимоотношения между ними. Система считается однородной в пространстве. Изучаются изменения во времени численности (биомассы) компонентов системы.
Б. При сохранении гипотезы однородности вводится предположение о закономерном изменении системы отношений между компонентами. Это может соответствовать либо закономерному изменению внешних условий (например, сезонному), либо заданному характеру эволюций форм, образующих систему. При этом по-прежнему изучается кинетика численности компонентов.
Аппаратом для изучения этих двух классов задач служат системы обыкновенных дифференциальных и дифференциально-разностных уравнений с постоянными (А) и переменными (Б) коэффициентами.
В.
Объекты считаются разнородными
по своим свойствам и
Г. Отказ от территориальной однородности и учет зависимости усредненных концентраций от координат. Здесь возникают вопросы, связанные с пространственным перераспределением живых и косных компонентов системы. Например, численность (биомасса) видов - гидробионтов меняется с изменением глубины водоема. Для описания таких систем необходимо привлечение аппарата дифференциальных уравнений в частных производных. В имитационных моделях часто вместо непрерывного пространственного описания применяют разбиение всей системы на несколько пространственных блоков.
Задачи пространственной организации экологических систем представляет особый интерес. До последнего времени предполагали, что пространственная неоднородность распространения видов связана в основном с ландшафтно-климатическими факторами. В последние годы все более глубоко осознается тот факт, что сама пространственная структурированность экологических систем может быть обусловлена не только исходно существующей пространственной неоднородностью, но и спецификой локальных взаимодействий составляющих экосистему популяций между собой и с косными компонентами среды. Возникающие и активно поддерживающиеся таким образом пространственные структуры называют экологическими диссипативными структурами.
Информация о работе Лекции по "Математика. Системный анализ"