Математическая логика

Автор работы: Пользователь скрыл имя, 27 Июня 2011 в 15:29, реферат

Описание

Слово «логика» всем хорошо знакомо. Его часто можно встретить на страницах всевозможных печатных изданий, услышать в разговорной речи. Что же означает это слово? Заглянем в толковый словарь С.И. Ожегова. Там сказано: «Логика – наука о законах мышления и его формах» и еще – «Логика – ход рассуждений». Если второе толкование смысла слова «логика» более или менее понятно каждому, то в связи с первым сразу возникает вопрос: а что такое формы и законы мышления?

Работа состоит из  1 файл

МАТЕМАТИЧЕСКАЯ ЛОГИКА.doc

— 479.50 Кб (Скачать документ)

Тема3: Математическая логика

                 …Встреча  математики с логикой  в прошлом столетии привела к таким  же последствиям, что  и приход принца в  зачарованный замок  спящей красавицы: после  столетий глубокого  сна логика вновь  расцвела плодотворной жизнью.

                 Л.Э. Гуревич, Э.Б. Глинер 

3.1 Введение

    Слово «логика» всем хорошо знакомо. Его часто  можно встретить на страницах  всевозможных печатных изданий, услышать в разговорной речи. Что же означает это слово? Заглянем в толковый словарь  С.И. Ожегова. Там сказано: «Логика  – наука о законах мышления и его формах» и еще – «Логика – ход рассуждений». Если второе толкование смысла слова «логика» более или менее понятно каждому, то в связи с первым сразу возникает вопрос: а что такое формы и законы мышления?

    Подобно Журдену из пьесы Мольера «Мещанин во дворянстве», который очень обрадовался, узнав, что всю жизнь говорит прозой, вам будет приятно узнать, что в большинстве случаев вы мыслите и говорите по законам логики.

    Слово «логика» происходит от греческого logos, что, с одной стороны, означает «слово», а с другой – «мысль, рассуждение». Логика изучает акты мышления, зафиксированные в языке в виде слов, предложений и их совокупностей. Таким образом, логика имеет непосредственное отношение к языку, речи, т.е. соприкасается с грамматикой и, более широко, с лингвистикой (наукой о языке). С помощью логических средств наш естественный язык уточняется, приобретает четкость и определенность. Как справедливо заметил польский логик А.Тарский, – логика создает возможность лучшего взаимопонимания между теми, кто к этому стремится.

    Многим  хорошо известно, что логика – неотъемлемая составная часть математики. Без  логики в математике – ни шагу: ни тебе теорему доказать, ни формулу  вывести, ни задачу решить. Ироническая  фраза: «Нематематики считают, что математики считают» намекает на то, что основное занятие математиков – вовсе не счет (как многие полагают), а логические или, иначе говоря, дедуктивные рассуждения – выводы, доказательства. (Слово дедукция происходит от латинского deduction, что значит – выведение). С помощью логики математики выводят из уже имеющихся в их распоряжении математических фактов новые факты.

    В этом и заключаются основное назначение и сила логики: с ее помощью, имея некоторый запас достоверных (истинных) знаний, можно получать новые знания, не прибегая к наблюдению или эксперименту, а лишь размышляя и рассуждая по определенным правилам.

    Логика  входит в арсенал методов любой  науки, является частью ее методологии. Многие естественнонаучные факты были открыты с помощью логики.

    Однако в математике логика выступает в наиболее отчетливом, нестертом, незавуалированном виде, а ее «удельный вес» несравненно больше, чем в естественных науках. В математической теории количество предложений, содержащих исходное знание (аксиом), сводится к минимуму; основное же содержание теории заключено в предложениях, полученных в результате логических рассуждений (теоремах). Поэтому математику называют дедуктивной наукой в отличие от естественных наук (физики, химии, биологии), в которых основной, ведущий метод – эксперимент. Впрочем, естественные и даже многие гуманитарные науки по мере своего развития все более активно и плодотворно используют математические и логические методы, а возможность представления содержания какой-либо науки (или ее раздела) в виде аксиоматической теории считается показателем высокой степени развития этой науки. Как полагал великий немецкий философ Эммануил Кант (1724-1804 гг.), – «каждая наука в той или иной мере является наукой, в какой мере содержит математику». Быть может, это сказано слишком сильно, однако, этой фразой емко и выразительно определено значение математики для других наук и ее место среди них. Недаром другой знаменитый ученый, наш соотечественник, физик Лев Ландау (1908-1968 гг.) назвал математику «наукой сверхъестественной».

    Итак, логика в большей или меньшей  степени используется как один из методов в любой науке. Необходима логика и в повседневной жизни. С  ее помощью обеспечивается полноценное (адекватное) общение в мире людей  и компьютеров. Логика присутствует или, по крайней мере, должна присутствовать в любом споре, судебном разбирательстве, расследовании преступления (Шерлок Холмс и его дедуктивный метод!).

    В высшей степени важна логика в  законотворчестве: формулировка закона должна исключать возможность его  неоднозначного толкования. «Логика – это необходимый инструмент, освобождающий от лишних, ненужных запоминаний, помогающий найти в массе информации то ценное, что нужно человеку. Без логики – это слепая работа» – так сказал о роли логики в познавательной, в частности в учебной деятельности, академик П. Анохин.

    Почему  же логика – столь универсальный  инструмент, полезный, более того –  необходимый в любой интеллектуальной деятельности? Чем объясняется ее общезначимость? Рассмотрим три рассуждения.

  1. Все насекомые – шестиногие. У паука – не шесть ног (а восемь!). Следовательно, паук не насекомое.
  2. Все числа, кратные 10, оканчиваются нулем. Число п не оканчивается нулем. Следовательно, число п не кратно 10.
  3. Все отличники в Петином классе занимаются спортом. Петя не занимается спортом. Следовательно, Петя – не отличник.

    Все эти короткие, одношаговые рассуждения (умозаключения) имеют одну и ту же форму: Все А – это В; не В. Следовательно, не А. Умозаключение такой формы всегда приводит к верному (истинному) выводу (заключению, следствию), если исходные утверждения (посылки) истинны. Формы рассуждений, обладающие свойством «перерабатывать» любые истины в новые истины, называются правильными. Логика дает нам свод правильных форм основных, простейших рассуждений (умозаключений) и правила построения из них сколь угодно длинных и сложных дедуктивных рассуждений, которые применимы в любой области знаний. Этим и объясняется универсальность и «вездесущность» логики, ни с чем не сравнимое многообразие сфер ее применения.

    Логика, хотя и связана с языком, но, в отличие от лингвистики, изучает не формы языка, а отраженные в языке формы мышления. А, как известно, несмотря на все различия языков, человечество имеет общее достояние в виде некоторой совокупности мыслей. Идея универсальности логики была использована при создании линкоса, языка для связи с инопланетными цивилизациями. При этом предполагалось, что логические формы и законы, свойственные человеческому мышлению, присущи всякому разуму, и что поэтому такой «логический» язык вместе с языком математических абстракций может стать средством общения в самом широком смысле и масштабе

    Логика  как наука сформировалась очень  давно – в IV в. до н.э. Ее создал древнегреческий ученый Аристотель. В течение многих веков логика сколько-нибудь существенно не развивалась. Это, конечно, свидетельствует о гениальности Аристотеля, которому удалось создать столь полную научную систему, что, казалось, «не убавить, не прибавить». Однако в силу такой неизменности логика приобрела славу мертвой, застывшей науки и вызывала у многих скептическое к себе отношение. Сухость и кажущуюся закостенелость, бесплодность логики высмеяли в своих бессмертных произведениях Ф. Рабле и Д. Свифт («Гаргантюа и Пантагрюэль» и «Путешествие Гулливера»). В XVII в. великий немецкий ученый Готфрид Лейбниц (1646-1716) задумал создать новую логику, которая была бы «искусством исчисления». В этой логике, по мысли Лейбница, каждому понятию соответствовал бы символ, а рассуждения имели бы вид вычислений. Эта идея Лейбница, не встретив понимания современников, не получила в то время распространения и развития.

    Только  в середине XIX в. ирландский математик и логик Джордж Буль (1815-1864) частично воплотил в жизнь идею Лейбница. Им была создана алгебра логики, в которой действуют законы, схожие с законами обычной алгебры, но буквами обозначаются не числа, а предложения. На языке булевой алгебры можно описывать рассуждения и «вычислять» их результаты; однако, ею охватываются далеко не всякие рассуждения, а лишь определенный тип их, в некотором смысле – простейший.

    Алгебра логики Буля явилась зародышем новой  науки – математической логики. В отличие от нее логику, восходящую к Аристотелю, называют традиционной или классической формальной логикой. Таким образом, математическая логика – это логика, использующая язык и методы математики.

    Математическая  логика сама стала областью математики, поначалу казавшейся в высшей степени  абстрактной и бесконечно далекой  от практических приложений. Сегодня  математическая логика используется в  биологии, медицине, лингвистике, педагогике, психологии, экономике, технике. Велика роль математической логики в развитии вычислительной техники: она используется в конструировании компьютеров и при разработке искусственных языков для общения с ними. 

3.2 Высказывания и операции над высказываниями

    Высказывание  – это повествовательное  предложение (утверждение), о котором можно  говорить, что оно  истинно или ложно.

    Высказывания  обозначают большими или маленькими латинскими буквами.

    Пример 1: А: «Москва – столица России» – истинное высказывание. b = «Волга впадает в Черное море» – ложное высказывание.

    Значения  истинности высказываний обозначаются буквами И – «истина» и Л – «ложь» или цифрами 1 – «истина» и 0 – «ложь». Т.е., А = 1(И), b = 0(Л).

    Не  всякое предложение является высказыванием. Так, к высказываниям не относятся вопросительные, и восклицательные предложения, поскольку говорить об их истинности или ложности нет смысла. Не являются высказываниями и такие предложения: «Каша – вкусное блюдо», «Математика – интересный предмет». Нет, и не может быть единого мнения о том, истинны эти предложения или ложны. Предложение «Существуют инопланетные цивилизации» следует считать высказыванием, так как объективно оно либо истинное, либо ложное, хотя пока никто не знает, какое именно.

    Предложения «Шел снег», «Площадь комнаты равна 20 м2», «а2 = 4» не являются высказываниями; для того, чтобы имело смысл говорить об их истинности или ложности, нужны дополнительные сведения: когда шел снег, о какой конкретно комнате идет речь, какое число обозначено буквой а. В последнем примере а может не обозначать конкретного числа, а быть переменной, т.е. буквой, вместо которой можно подставлять элементы некоторого множества, называемые значениями переменной. Пусть, например, {-2; 0; 2; 3; 4} – множество значений переменной а. Каждому значению переменной соответствует либо истинное, либо ложное высказывание. Например: высказывания «(-2)2 = 4» и «22 = 4» истинны, а высказывания «02 = 4», «32 = 4» и «42 = 4» ложны.

    Предложение, которое содержит хотя бы одну переменную и становится высказыванием при подстановке вместо всех переменных их значений, называется высказывательной формой.

    Рассмотрим  предложения: «Он рыжеволос» и «Число делится на 7». Эти предложения  не содержат переменных в явном виде, но, тем не менее, являются высказывательными формами: первое из них становится высказыванием (истинным или ложным) только после замены местоимения «он» именем конкретного человека из некоторого множества людей мужского пола; второе становится высказыванием, если вместо слова «число» подставлять целые числа. Иначе эти предложения можно записать так: «Человек х рыжеволос», «Число у делится на 7».

    Из  высказывательных форм можно получать высказывания также с помощью  специальных слов, так называемых кванторов. Их два: 1) квантор всеобщности – (любой, всякий, каждый); 2) квантор существования – (существует, найдется, имеется, некоторый, по меньшей мере, один). Например, из высказывательной формы «Площадь комнаты 20 м2» можно с помощью кванторов получить высказывания: «Площадь любой комнаты 20 м2» – ложное, «Существует комната, площадь которой 20 м2» – истинное.

    Из  двух данных предложений можно образовывать новые предложения с помощью  союзов «и», «или», «либо», «если…, то…», «…тогда и только тогда, когда…» и других. С помощью частицы «не» и словосочетания «неверно, что…» из одного предложения можно получить новое. Наиболее употребительными являются союзы «и», «или», «если…, то…» и «…тогда и только тогда, когда». Остальные союзы считают близкими по смыслу одному из перечисленных союзов.

    Союзы «и», «или», «если, то», «тогда и только тогда, когда», а также  частицу «не» (словосочетание «неверно, что») называют логическими связками.

Информация о работе Математическая логика