Автор работы: Пользователь скрыл имя, 16 Мая 2012 в 10:21, курсовая работа
Актуальность моего исследования определила цель и задачи работы: Цель исследования – рассмотреть развитие понятия числа. Для достижения цели необходимо решить следующие задачи:
На основе анализа зарубежной и отечественной литературы, монографических источников изучить заявленную тему.
Провести анализ истории развития понятия числа.
Рассмотреть понятие числа.
Выявить и проанализировать развитие понятия числа.
На основе проведенного исследования сделать выводы и дать рекомендации по работе.
Естественной единицей высшего разряда при возникновении двадцатеричной системы явился «человек» как обладатель 20 пальцев. В этой системе 40 выражается как «два человека», 60 – «три человека» и т.д. Двадцатеричная система имеет большой недостаток: для её словесного выражения надо иметь 20 различных названий для основных чисел. Поэтому, когда у некоторых племен развилась десятичная система счисления, то и многие другие племена, употреблявшие двадцатеричную, постепенно отошли от нее, переняв десятичную. Как полагают, переходу от двадцатеричной системы к десятеричной способствовало и то, что с тех пор, как люди стали употреблять обувь, закрывавшую пальцы ног, возможность непосредственного счета двумя десятками утратилось. Двадцатеричная система в наше время в чистом воде не отмечена ни у одного народа; обычно она соединяется с десятичной или с пятеричной. Однако следы этой системы сохранились в называниях у некоторых, даже достигших высокого культурного развития народов.
Так, например, у французов число 80 выражается словом quatre-vingts (четырежды двадцать), а 90 – словом quatre-vingt-dix (четырежды двадцатьт и десятьт), у грузин числа 40, 60 и 80 называются ормацы, сомацы и отхмацы, т.е. 2х20, 3х20 и 4х20 (где «оцы» означает 20, «ори» - 2, «сами» - 3, а «отхи» - 4). Числа 30, 50, 70 и 90 называются оцдаати, ормоцдаати, цамоцдаати и отхмоцдаати, т.е. 20+10, 2х20+10, 3х20+10 и 4х20+10.
Некоторые племена в качестве счетного аппарата применяли не сами пальцы рук, а их суставы. В этом случае счет иногда развивался тоже достаточно продуктивно и оформлялся в стройные системы. Здесь процесс счета протекал таким образом: большой палец одной руки является счетчиком суставов остальных пальцев этой руки; т.к. на каждом из остальных четырех пальцев этой руки содержится по три сустава, то следующий за суставом выше единицей являлось число 12, что и послужило двенадцатеричной системой счисления. Этот процесс иногда не останавливался на двенадцати, а продолжался далее, причем каждый палец другой руки служил единицей высшего разряда, т.е. представлял собой 12, и после отсчета всех пальцев на второй руке создавалась новая единица высшего разряда 12х5, т.е. 60. Возможно, что такого рода счет способствовал созданию шестидесятеричной системы счисления, имевшей большое распространение в древнем Вавилоне и перешедшей позднее ко многим другим народам.
Следы двенадцатеричной и шестнадцатеричной систем счисления сохранились и до нашего времени. Стоит вспомнить хотя бы счет часов в сутках, измерение углов градусами, минутами и секундами.
Так постепенно, под влиянием потребностей экономического характера, человечество создавало свои методы счета и достигло, наконец, стройного метода, который в дальнейшем сознательного совершенствовался и упрощался, пока не превратился в метод, которым и пользуется современная математика.
.
Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими , как «толпа», «стадо», «куча» и т.д.
Источником
возникновения понятия
У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея – обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.
С
развитием письменности возможности
воспроизведения числа
Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.
Натуральные числа, кроме основной функции – характеристики количества предметов, несут ещё другую функцию – характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).
Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких- либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа – с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг.19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощности, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется что-то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих данную совокупность. Действительно, на эталонную совокупность на ранних ступенях – пальцы рук и зарубки на палочке и т.д. на современном этапе – слова и знаки, обозначающие число. Определение данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.
Наряду
с необходимостью считать предметы
у людей с древних времён появилась
потребность измерять длину, площадь.
Объём, время и другие величины. Приходится
учитывать и части
В истории развития дробного числа мы встречаем дроби трёх видов:
1)
доли или единичные дроби, у
которых числитель единица,
2)
дроби систематические, у
3) дроби общего вида, у которых числители и знаменатели могут быть любыми числами.
Изобретение этих трёх различных видов дробей представляло для человечества разные степени трудности, поэтому разные виды дробей появлялись в разные эпохи.
Знакомство человека с дробными числами началось с единичных дробей с малыми знаменателями.
Понятия «половина», «треть», «четверть», «осьмушка» употребляются часто людьми, которые арифметике дробных чисел никогда не обучались. Эти простейшие дроби изобрёл каждый народ самостоятельно в ходе своего развития.
Единичные дроби. Древние египтяне, несмотря на то, что в течение нескольких тысячелетий своей истории развили высокую культуру, оставили после себя прекрасные памятники искусства, владели многими отраслями техники, однако в арифметике дробных чисел не пошли далее изобретения единичных дробей (и дроби ). Если задача приводила к ответу, который мы выражаем дробным числом, египтяне его представляли в виде суммы единичных дробей или долей. Если, например, ответ по нашему был , египтяне представляли его в виде суммы + + и писали без знаков сложения: . Без знака сложения обходились и многие позднейшие народы, понимая писание дробей рядом, как сложение. Этот египетский способ письма частично сохранился и у нас. Мы пишем смешанные числа, ставя рядом, без какого-либо соединяющего знака, число целых единиц и дробей, и понимаем запись, как сумму: пишем вместо .
Может показаться, что египетский способ пользования одними лишь единичными дробями делал решение задач сложным. Не всегда это так. Например, египетский автор решает задачу: нужно разделить 7 хлебов поровну между восемью лицами. Мы сказали бы, что каждый получает хлеба.
Для египтянина не было числа , но он знал, что от деления 7 на 8 получается + + . Этот факт подсказывает ему, что для делёжа семи хлебов между восемью лицами нужно иметь 8 половинок, 8 четвертей и 8 осьмушек. Он режет 4 хлеба пополам, 2 хлеба – на четвертинки и 1 хлеб – на осьмушки и распределяет доли между получающими. Для делёжа пришлось сделать всего 4+6+7=17 разрезов.
Кладовщик, работающий в наши дни, которому предстоит такая же задача деления хлебов, сообразив, что каждому получателю надо дать семь восьмушек, быть может, сочтет нужным разрезать все 7 хлебов предварительно на восьмушки, для чего ему требуется сделать 7х7=49 размеров. Как видим, в этой задаче египетский способ решения является более практичным.
Решение задач практической жизни при помощи одних лишь долей (египетский способ) имело место почти у всех европейских народов, начиная с греков.
Систематические дроби. Одновременно с единичными дробями появились и систематические дроби. Самый ранний по времени вид таких дробей есть шестидесятеричные дроби, употреблявшиеся в древнем Вавилоне. В этих дробях знаменателем служат числа 60; 602 = 3600, 603 = 261 000, 604, 605 и т.д., и они сходны с нашими десятеричными дробями.
Шестидесятеричными дробями пользовались все культурные народы до XVII века, особенно в научных работах, поэтому они и назывались физическими или астрономическими дробями, а дроби общего вида, в отличие от них – обыкновенными или народными. Следы пользования этими дробями остались у нас до сих пор: минута есть 1/60, секунда 1/602 = 1/3600, терция 1/603 = 1/216 000 часть числа.
Десятичные дроби. Десятичные дроби представляют также вид систематических дробей.
К десятичным дробям математики пришли в разные времена в Азии и в Европе.
Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II в. до н.э. там существовала десятичная система мер длины.
Примерно в III в н.э. десятичный счет распространился на меры массы и объёма. Тогда и было создано понятие о десятичной дроби, сохранившей метрологическую форму.
Вот, например, какие меры массы существовали в Китае в X веке: 1 лан = 10 цянь = 102 фэнь = 103 ли = 104 хао = 105 сы = 106 хо.
Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей.
Целую часть от дробной стали
отделять особым иероглифом «