Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 17:23, лекция
Требуется найти решение системы линейных уравнений:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
a21x1 + a22 x2 + a23x3 + … + a2nxn = b2
a31x1 + a32 x2 + a33x3 + … + a3nxn = b3
Тема 3. Решение систем линейных алгебраических уравнений
3.1 Постановка задачи
Требуется найти решение системы линейных уравнений:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
a21x1 + a22 x2 + a23x3 + … + a2nxn = b2
a31x1 + a32 x2 + a33x3 + … + a3nxn
= b3
.
an1x1 + an2 x2 + an3x3 + … + annxn = bn
или в матричной форме:
Ax = b,
где
a11 a12 a13 … a1n x1 b1
a21 a22 a23 … a2n x2 b2
A = a31 a32 a33 … a3n x =x3 , b =b3
an1 an2 an3 ann xn bn
По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det A 0) и значение каждого из неизвестных определяется следующим образом:
xj =
, j = 1, …, n,
где det Aj – определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частей b.
Непосредственный расчет определителей для больших n является очень трудоемким по сравнению с вычислительными методами.
Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.
Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших n требуется большое количество операций, и возникает опасность накопления погрешностей.
Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.
Среди прямых методов наиболее распространенным является метод исключения Гаусса и его модификации, Наиболее распространенными итерационными методами является метод простых итераций Якоби и метод Зейделя.
Эти методы будут рассмотрены в следующих разделах.
3.2 Метод исключения Гаусса. Схема единственного деления
Основная идея метода исключений Гаусса состоит в том, что система уравнений (3.1) приводится к эквивалентной ей системе с верхней треугольной матрицей (прямой ход исключений), а затем неизвестные вычисляются последовательной подстановкой (обратный ход исключений).
Рассмотрим сначала простейший метод исключения Гаусса, называемый схемой единственного деления.
Прямой ход состоит из n – 1 шагов. На первом шаге исключается переменная x1 из всех уравнений, кроме первого. Для этого нужно из второго, третьего, …, n-го уравнений вычесть первое, умноженное на величину
m
=
, i = 2, 3, …, n.
При этом коэффициенты при x1 обратятся в нуль во всех уравнениях, кроме первого.
Введем обозначения:
a
= aij – m
a1j , b
= bi – m
b1.
Легко убедиться, что для всех уравнений, начиная со второго, a = 0, i = 2, 3, …, n. Преобразованная система запишется в виде:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
a x2 + a x3 + … + a xn = b
a
x2 + a
x3 + … + a
xn = b
a x2 + a x3 + … + a xn = b
Все уравнения (3.6), кроме первого, образуют систему (n – 1)-го порядка. Применяя к ней ту же процедуру, мы можем исключить из третьего, четвертого, …, n-го уравнений переменную x2. Точно так же исключаем переменную x3 из последних n – 3 уравнений.
На некотором k-ом шаге в предположении, что главный элемент k-ого шага a 0, переменная xk исключается с помощью формул:
m = ,
a = a – m a ,
b
= b
– m
b
, i, j = k + 1, k + 2, …, n.
Индекс k принимает значения 1, 2, …, n – 1.
При k = n – 1 получим треугольную систему:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
a x2 + a x3 + …+ a xn = b
a
x3 + …+ a
xn = b
a xn = b
с треугольной матрицей An.
Приведение системы (3.1) к треугольному виду (3.8) составляет прямой ход метода Гаусса.
При использовании метода Гаусса нет
необходимости в
Обратный ход состоит в
xn = ,
xk = (b - a xk+1 - a xk+2 - … - a xn), k = n – 1, n – 2, …, 1 (3.9)
Трудоемкость метода. Для реализации метода исключения Гаусса требуется примерно 2/3n3 операций для прямого хода и n2 операций для обратного хода. Таким образом, общее количество операций составляет примерно 2/3n3 + n2.
Пример 3.1.
Применим метод исключения Гаусса по схеме единственного деления для решения системы уравнений:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.4x1 + 0.5x2 + 4.0x3 – 8.5x4 = 21.9
0.3x1 – 1.0x2 + 1.0x3 + 5.2x4
= – 3.9
1.0x1 + 0.2x2 + 2.5x3 – 1.0x4 = 9.9
Будем делать округление чисел до четырех знаков после десятичной точки.
Прямой ход. 1-ый шаг. Вычислим множители:
m = = = 0.2; m = = = 0.15; m = = = 0.5.
Вычитая из второго, третьего и четвертого уравнений системы (3.10) первое уравнение, умноженное соответственно на m , m , m , получим новую систему:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
–1.15x2 + 1.015x3 + 5.05x4 = – 4.305
– 0.30x2 + 2.55x3 – 1.50x4 = 8.55
2-ой шаг. Вычислим множители:
m = = = – 3.83333; m = = = –1.0.
Вычитая из третьего и четвертого уравнений системы (3.11) второе уравнение, умноженное соответственно на m и m , приходим к системе:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
16. 425x3 – 28.300x4
= 77.575
6.570x3 – 10.200x4 = 29.910
3-ий шаг. Вычислим множитель:
m = = = 0.4.
Вычитая из четвертого уравнения системы (3.12) третье, умноженное на m , приведем систему к треугольному виду:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
16. 425x3 – 28.300x4
= 77.575
1.12x4 = –1.12
Обратный ход. Из последнего уравнения системы (3.13) находим x4 = 1.000. Подставляя значение x4 в третье уравнение, получим x3 = 2.000. Подставляя найденные значения x4 и x3 во второе уравнение, найдем x2 = 3.000. Наконец, из первого уравнения, подставив в него найденные значения x4, x3 и x2, вычислим x1 = –1.000.
Итак система (3.10) имеет следующее решение:
x1 = 1.000, x2 = 2.000, x3 = 3.000, x4 = – 1.000.
3.3 Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной диагонали a равен нулю. Если элемент a мал, то велики ошибки округления при делении на этот элемент. Для уменьшения ошибок округления применяют метод исключения Гаусса с выбором главного элемента по столбцу. Прямой ход так же, как и для схемы единственного деления, состоит из n – 1 шагов. На первом шаге прежде, чем исключать переменную x1, уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент ai1, i = 1, 2, …, n. В дальнейшем, на k-м шаге, прежде, чем исключать переменную xk, уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент aik, i = k, k + 1, …, n. После этой перестановки исключение переменной xk производят, как в схеме единственного деления.
Трудоемкость метода. Дополнительные действия по выбору главных элементов требуют примерно n2 операций, что практически не влияет на общую трудоемкость метода.
Пример 3.2.
Применим метод исключения Гаусса с выбором главного элемента по столбцу для решения системы уравнений (3.10) из примера 3.1. Прямой ход. 1-ый шаг. Так как коэффициент a11 = 2.0 наибольший из коэффициентов первого столбца, перестановки строк не требуется и 1-ый шаг полностью совпадает с 1-ым шагом примера 3.1. Из второго, третьего и четвертого уравнений исключается переменная x1 и система приводится к виду (3.11).
2-ой шаг. Наибольший по модулю коэффициент при x2 в системе (3.11) a = –1.15. Поэтому переставим уравнения следующим образом:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
–1.15x2 + 1.015x3 + 5.05x4 = – 4.305
0.3x2 + 4.02x3 – 8.70x4 = 21.36
– 0.30x2 + 2.55x3 – 1.50x4 = 8.55
Вычислим множители:
m = = = –0.26087 m = = = 0.26087.
Вычитая из третьего и четвертого уравнений системы (3.14) второе уравнение, умноженное соответственно на m и m , приходим к системе:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
–1.15x2 + 1.015x3 + 5.05x4 = – 4.305 (3.15)
4.28478x3 – 7.38261x4 = 20.23696
2.28522x3 – 2.81739x4 = 9.67305
3-ий шаг. Вычислим множитель:
m = = = 0.53333.
Вычитая из четвертого уравнения системы (3.15) третье, умноженное на m , приведем систему к треугольному виду:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
–1.15x2 + 1.015x3 + 5.05x4 = – 4.305
4.28478x3 – 7.38261x4 = 20.23696
1.11998x4 = –1.11998
Обратный ход. Обратный ход полностью совпадает с обратным ходом примера 3.1. Решение системы имеет вид:
x1 = 1.000, x2 = 2.000, x3 = 3.000, x4 = – 1.000.
3.4 Вычисление
определителя методом исключени
Из курса линейной
алгебры известно, что определитель
треугольной матрицы равен
det A = (–1)s det An,
где s – число перестановок
строк, (s = 0, если использовался метод
Гаусса по схеме единственного деления).
det A = (–1)s a11 a
a
…a
Итак, для вычисления определителя det A необходимо выполнить процедуру прямого хода в методе Гаусса для системы уравнений Ax = 0, затем найти произведение главных элементов, стоящих на диагонали треугольной матрицы и умножить это произведение на (–1)s, где s – число перестановок строк.
Пример 3.3.
Вычислим определитель det A =
2.0 1.0 0.1 1.0
0.4 0.5 4.0 8.5
0.3 1.0 1.0 5.2
1.0 0.2 2.5 1.0
Данный определитель
совпадает с определителем
det A = 2.0 × 0.30 × 16.425 × 1.12 = 11.0376.
Если же обратиться к примеру 3.2, то, учитывая, что была одна перестановка строк, т.е. s = 1, получим:
det A = (–1) × 2.0 × (–1.15) × 4.28478 × 1.11998 = 11.0375.
3.5 Вычисление
обратной матрицы методом
Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение:
A A-1 = E,
где E – единичная матрица:
1 0 0 … 0
0 1 0 … 0
E = 0 0 1 … 0
.
Информация о работе Решение систем линейных алгебраических уравнений