Автор работы: Пользователь скрыл имя, 29 Декабря 2011 в 20:04, реферат
Одно из произведений, написанное Паскалем, называется «Пари Паскаля», в котором он размышляет о вопросе спасения с точки зрения вероятностей. В «Пари Паскаля» говорится: «Что теряет человек, который становится Христианином? Если после его смерти оказывается, что Бога не существует, что и его вера была напрасной, этот человек ничего не потерял. На самом деле этот человек прожил свою жизнь даже более счастливо по сравнению со своими неверующими друзьями.
Введение 3
1. Выдающийся учёный и посвященный Христианин 4
1.1. Вычислительная машина Паскаля 4
1.2. Христианские убеждения 5
1.3. Теория Вероятности 6
1.4. Возвращение 6
2. Вклад Б. Паскаля в развитие теории вероятностей 8
Заключение 16
Список литературы 17
Толчком к появлению интересов Паскаля к задачам, приведшим к теории вероятностей, послужили встречи и беседы с одним из придворных французского королевского двора — шевалье де Мере (1607-1648). Де Мере интересовался философией, литературой и одновременно был страстным игроком. В этой страсти были истоки тех задач, которые он предложил Паскалю. Вот эти вопросы:
Де Мере претендовал, что первую задачу он решил. Однако при ближайшем рассмотрении в его рассуждениях легко обнаружить ошибку. А именно, в одном из писем де Мере Паскалю содержится такая фраза: «Если в одном случае есть один шанс из в единственной попытке и в другом случае один шанс из , то отношение соответствующих чисел есть . Таким образом, ».
Обозначения и смысл этой фразы требуют пояснения. В приведенном письме речь идет о следующем: при бросании одной кости имеется различных исходов и выпадению шестерки благоприятствует один из них. При бросании двух костей сразу выпадению шестерки на двух костях благоприятствует лишь один исход из возможных. При бросании одной кости (= 4) раз число благоприятствующих исходов для выпадения шестерки превосходит число благоприятствующих случаев ее невыпадения. Символом обозначим число бросаний двух костей, при котором число благоприятствующих случаев выпадения одновременно двух шестерок превзойдет число благоприятствующих случаев для их невыпадения ни разу. Из правила де Мере вытекает, что уже при 24 бросаниях двух костей наступает интересующее нас событие.
В действительности правило де Мере ошибочно, поскольку вероятность того, что при четырех бросаниях одной кости ни разу не появится шестерка, равна и, значит, искомая вероятность равна . В этом пункте де Мере оказался прав, но при 24 бросаниях двух костей вероятность ни разу не выбросить сразу две шестерки равна (35/36)24 = 0,509, а искомая вероятность хотя бы раз выбросить две шестерки сразу есть 1 - (35/36)24 = 0,491. Легко понять, что двадцати четырех бросаний еще недостаточно, а нужно по меньшей мере двадцать пять бросаний двух костей, чтобы вероятность выпадения сразу двух шестерок превосходила 0,5.
При изложении мы воспользовались современным языком и употребляли понятие вероятности. Подход де Мере был обычным для того времени и ограничивался лишь подсчетом числа благоприятствующих тому или иному событию шансов.
Основное содержание писем Паскаля и Ферма посвящено разделу ставки. Решение, предложенное Паскалем, в подробностях изложено в письме от 29 июля:
«Вот примерно, что я делаю для определения стоимости каждой партии, когда два игрока играют, например, на три партии и каждым вложено по 32 пистоля.
Предположим, что один выиграл две партии, а другой одну. Они играют еще одну партию, и если выигрывает первый, то он получает всю сумму в 64 пистоля, вложенную в игру; если же эту партию выигрывает второй, то каждый игрок будет иметь по 2 выигранных партии, и, следовательно, если они намерены произвести раздел, каждый должен получить обратно свой вклад в 32 пистоля.
Примите же во внимание, монсеньер, что если первый выиграет, то ему причитается 64; если он проиграет, то ему причитается 32. Если же игроки не намерены рисковать на эту партию и хотят произвести раздел, то первый должен сказать: „Я имею 32 пистоля верных, ибо в случае проигрыша я их также получил бы, но остальные 32 пистоля могут быть получены либо мной, либо Вами, случайности равны. Разделим же эти 32 пистоля пополам, и дайте мне, кроме того, бесспорную сумму в 32 пистоля"».
Далее Паскаль рассмотрел другой случай, когда первый игрок выиграл две партии, а второй ни одной, и третий, когда первый игрок выиграл одну партию, а второй ни одной. В обоих случаях рассуждения при решении подобны тем, которые уже были проведены. Ответы же, предложенные Паскалем, таковы: в первом случае один игрок должен получить 56, а второй — 8 пистолей; во втором же — 44 и 20.
Решение, которое для задачи Паскаля предложил Ферма, дошло до нас только по изложению, которое содержится в письме Паскаля от 24 августа. Письмо же Ферма с оригинальным текстом не сохранилось. Пусть до выигрыша игроку А недостает двух партий, а игроку В — трех партий. Тогда для завершения игры достаточно сыграть еще максимум четыре партии. Их возможные исходы представлены в виде следующей табл.1:
Таблица 1
Номер исхода (НИ) | Возможные исходы партий (ВИП) | НИ | ВИП | НИ | ВИП | НИ | ВИП |
1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | ||||
1
2 3 4 |
А А А А
А А А В А А В А А А В В |
5
6 7 8 |
А В А А
В А А В В А А А А В А В |
9
10 11 |
А В В А
В А В А В В А А |
12
13 14 15 16 |
В В В А
В В А В В А В В А В В В В В В В |
Игра выиграна игроком | А после двух партий | А после трех | А после четырех партий | В после трех или четырех партий |
В этой таблице символом А обозначен выигрыш соответствующей партии игроком А, символом В — игроком В. Номера партий идут по строкам, номера исходов — по столбцам. В первых одиннадцати исходах выигрывает игрок А, в последних пяти — игрок Б. Таким образом, ставка между игроками А и В должна быть разделена в отношении 11 к 5. Иными словами, игрок А получит 11/16, а игрок В — 5/16 ставки. Совершенно очевидно, что Ферма, так же как и Паскаль, делит ставку пропорционально вероятностям выигрыша каждым из игроков всей игры. Но этого понятия в их руках еще нет, и они вынуждены искать иные способы выражения своих идей. В результате они сами не замечают, что их исходные позиции одинаковы. Это отчетливо видно из письма Паскаля от 27 октября, в котором он писал: «Сударь, я очень доволен Вашим последним письмом, я любуюсь методом в отношении партий, тем более, что я хорошо понимаю, он полностью Ваш, ничего общего не имеет с моим и легко приводит к той же самой цели».
В письме от 24 августа Паскаль высказал сомнение в том, что метод Ферма можно распространить на число игроков, большее двух. Однако Ферма показал, что теми же рассуждениями можно решить задачу о разделении ставки и для случая трех игроков. Это решение им было использовано в задаче о трех игроках, когда до окончания игры игроку А недостает одной выигрышной партии, а игрокам В и С — по две. Это решение вновь сопровождается таблицей, смысл которой пояснять уже нет необходимости (табл.2):
Таблица 2
АААААААААВВВСССВС
АААВВВСССААААААСВ ABCABCABCABCABCAA |
ВВВВС
ВВВСВ ВАСВВ |
ССССВ
СССВС САВСС |
AAAAAAAAAAAAAAAAA | ВВВВВ | ССССС |
В своем письме Паскаль отметил, что Ж. Роберваль (1604-1675) спросил его, зачем рассматривать продолжение игры до четырех партий в тех случаях, когда уже ясно, какой из игроков выигрывает игру? Паскаль явно понимал, что это необходимо для сохранения равновозможности всех перечисляемых случаев. Так, в первых четырех исходах первой таблицы игрок А выигрывает всю игру уже после двух партий. Точно так же в первых девяти исходах второй таблицы игрок А выигрывает игру после первой партии. Тем не менее Ферма доводит таблицу до конца и рассматривает все возможные исходы четырех партий. Этим самым Паскаль и Ферма избежали ошибки, которую допустил в следующем столетии Д'Аламбер (1717-1783), когда подсчитывал число равновероятных случаев при бросании двух монет.
При рассмотрении второй таблицы Паскаль допустил неточность в рассуждениях. А именно, он считал, что из 27 возможных исходов бесспорно благоприятствуют игроку А лишь 13, а исходы 5, 11, 19 столбцов, так же как 9, 15 и 24, благоприятствуют сразу и игроку А и игроку В (как А, так и С), поэтому их следует брать с половинным весом. В результате Паскаль предлагал делить ставку в отношении 16:5, 5:5,5.
Паскаль одновременно с размышлениями над проблемами, составившими содержание его переписки с Ферма, разрабатывал вопросы комбинаторики. Результатом этого явился «Трактат об арифметическом треугольнике», опубликованный в 1665 г. и внесший серьезный вклад в развитие комбинаторики. В этом трактате имеется параграф, в котором изложены правила использования комбинаторных результатов в задаче о разделе ставки. Правило, предложенное Паскалем, состоит в следующем: пусть игроку А до выигрыша всей игры не хватает m партий, а игроку В — n партий, тогда ставка должна делиться между игроками в таком отношении:
Несмотря на то, что их исследования проводились с использованием разных игровых ситуаций, эта теория имеет огромное количество применений. Она лежит в основе всех систем страхования и представляет огромную ценность для многих других отраслей науки, таких как квантовая физика, где поведение элементарных частиц можно описать с помощью вероятностей. Именно Паскалю принадлежит изобретение простого метода для определения вероятности результатов, который известен сегодня как Треугольник Паскаля.
Информация о работе Вклад Б. Паскаля в развитие теории вероятностей