Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 18:00, курсовая работа
Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.
Введение
Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.
Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система.
Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.
Сложность
системы определяется количеством
входящих в нее элементов, связями
между этими элементами, а также
взаимоотношениями между
Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.
Потенциальная
возможность математического
В
последние годы в прикладной математике
большое внимание уделяется новому
классу задач оптимизации, заключающихся
в нахождении в заданной области
точек наибольшего или
Решение
задач математического
1 Задача
линейного программирования:
нахождение оптимального
плана
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений. Линейное программирование — математическая дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах n-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств. Линейное программирование является частным случаем выпуклого программирования, которое в свою очередь является частным случаем математического программирования. Одновременно оно — основа нескольких методов решения задач целочисленного и нелинейного программирования. Одним из обобщений линейного программирования является дробно-линейное программирование. Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким образом геометрически формулировать и доказывать их. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Владение аппаратом линейного программирования необходимо каждому специалисту в области прикладной математики.
Линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. По типу решаемых задач методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования. Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений.
Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.
В общем виде модель записывается следующим образом:
f()= c1x1 + c2x2 + … + cnxn → max(min); (1)
xj ≥ 0, (3)
При этом aij, bi, cj ( , ) – заданные постоянные величины.
Задача состоит в нахождении оптимального значения функции (1) при соблюдении ограничений (2) и (3).
Систему ограничений (2) называют функциональными ограничениями задачи, а ограничения (3) – прямыми.
Решения,
удовлетворяющие системе
Особенностью
задач линейного
К
числу задач линейного
1) рационального использования сырья и материалов;
2) задачи оптимального раскроя;
3) оптимизации производственной программы предприятий;
4) оптимального размещения и концентрации производства;
5) составления оптимального плана перевозок, работы транспорта (транспортные задачи);
6) управления производственными запасами;
7) и многие другие, принадлежащие сфере оптимального планирования.
Линейное
программирование является одной из
основных частей того раздела современной
математики, который получил название
математического
Задачи линейного программирования с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение невозможно.
Графический метод довольно прост и нагляден. Он основан на геометрическом представлении допустимых решений задачи. Каждое из неравенств задачи ЛП определяет на координатной плоскости некоторую полуплоскость, а система неравенств в целом - пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений. ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлен выпуклым многоугольником, неограниченным выпуклой многоугольной областью, отрезком, лучом и т.д. В случае несовместности системы ограничений задачи ОДР является пустым множеством.
При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи, существует бесконечное множество решений; ЦФ не ограничена; область допустимых решений- единственная точка; задача не имеет решений.
Любая задача линейного программирования, независимо от вида записи, может быть приведена к стандартной и канонической форме и решена симплексным методом, который в определенном смысле является универсальным методом ЛП. Алгоритм симплекс-метода носит итерационный характер.
Симплекс-метод позволяет переходить от одного допустимого базисного решения к другому, причем так, что значения целевой функции непрерывно возрастают. Алгоритмы симплекс-метода позволяют также установить, является ли задача ЛП разрешимой.
Переход от одного базиса к другому позволяет находить решения почти всех задач ЛП. Определив все крайние точки, можно вычислить значения целевой функции и найти оптимальное решение. Однако для больших значений m и n это практически невозможно.
Алгоритм решения задачи ЛП табличным симплексом-методом состоит из следующих этапов:
1) рассчитывают и заполняют начальную симплекс-таблицу с допустимым единичным базисом, включая индексную строку.
2) находят разрешающий столбец;
3) находят разрешающую строку;
4) рассчитывают методом Жордано-Гаусса все параметры матрицы;
5) анализируют полученные данные в индексной строке.
Таблицы симплекс-метода необходимо строить до тех пор, пока не будет получен оптимальный план. План будет считаться оптимальным, если в последней индексной строке симплекс-таблицы будут только нули и положительные числа.
При
построении симплексного метода предполагалось,
что все опорные планы
Метод искусственного базиса применяется при наличии в ограничении знаков “равно”, “больше либо равно”, “меньше либо равно” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами , а в задачи минимизации - с положительными . Таким образом, из исходной получается новая - задача.
Если в оптимальном решении - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.
Информация о работе Задача линейного программирования: нахождение оптимального плана