Постулаты Евклида

Автор работы: Пользователь скрыл имя, 03 Апреля 2012 в 10:19, реферат

Описание

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда “Начал” оно было единственным руководством для изучающих геометрию.

Работа состоит из  1 файл

Постулаты Евклида.doc

— 107.00 Кб (Скачать документ)

Развитие евклидовой геометрии

Новая система геометрии не получила признания при жизни ее творцов.

Коллега Лобачевского по Казанскому университету П.И. Котельников (1809-1879) в своей актовой речи 1842 г. открыто заявил: “не могу умолчать о том, что тысячелетние тщетные попытки доказать со всей математической строгостью одну из основных теорем геометрии, равенство суммы углов в прямолинейном треугольнике двум прямым, побудили достопочтенного заслуженного профессора нашего университета предпринять изумительный труд - построить целую науку, геометрию, на новом предложении: сумма углов в прямолинейном треугольнике меньше двух прямых – труд . который рано или поздно найдет своих ценителей”. За исключением этого выступления неизвестны другие официальные положительные отзывы о Лобачевском, как о творце новой геометрии. На “Аппендикс” Я. Бояи и вовсе не имелось откликов. Гаусс же, как уже говорилось, избегал публикации своих открытий.

Ситуация изменилась только в 60-х годах XIX века. Несмотря на враждебное отношение отдельных влиятельных математиков старших поколений, к изучению и разработке неевклидовой геометрии приступает все большее число выдающихся молодых ученых. Некоторую роль в этом сыграло посмертное издание писем Гаусса. В Европе идеи неевклидовой геометрии воспринимаются с энтузиазмом, появляются переводы трудов Лобачевского. Меняется отношение к новой геометрии и в России. В 1868 г. профессор Московского высшего технического училища А. В. летников (1837-1888) поместил в III тому “Математического сборника” русский перевод “Геометрических исследований” Лобачевского с предисловием, в котором геометрические труды Лобачевского характеризуются как “весьма замечательные, но мало известные”, а профессор Э. П. Янишевский опубликовал в Казани “Историческую записку о жизни и деятельности Н. И. Лобачевского”. И, наконец, в том же 1868 году выходит статья Э. Бельтрами(1835 - 1900) об интерпретациях геометрии Лобачевского “опыт интерпретации неевклидовой геометрии”, в которой он отправлялся от работ Миндинга. В этой работе Бельтрами вычислил линейный элемент (квадрат дифференциала дуги) плоскости Лобачевского в координатах u, v, равных расстояниям точки от двух взаимно перпендикулярных прямых, деленным на r (в настоящее время эти координаты называют бельтрамиевыми), и нашел, что в этой системе координат линейный элемент имеет вид

.

Вычисляя далее гауссову кривизну поверхности с таким линейным элементом, Бельтрами обнаружил, что гауссова кривизна плоскости Лобачевского во всех ее точках равна одному и тому же числу , то есть что плоскость Лобачевского можно рассматривать как поверхность постоянной отрицательной кривизны.

Так как всякую поверхность с точки зрения ее внутренней геометрии можно рассматривать как интерпретацию любой поверхности, наложимой на нее, а необходимым и достаточным условием наложимости поверхностей является равенство гауссовых кривизн в соответственных точках поверхностей, Бельтрами сделал вывод, что плоскость Лобачевского может быть интерпретирована любой поверхностью постоянной отрицательной кривизны.

Впоследствии (1900) Гильберт доказал, что всякая поверхность постоянной отрицательной кривизны в евклидовом пространстве изометрична только части или нескольким частям плоскости Лобачевского, но никогда не изометрична плоскости Лобачевского целиком.

С другой стороны, рассматривая точки евклидовой плоскости с координатами, численно равными “бельтрамиевым координатам” u, v плоскости Лобачевского, Бельтрами получает вторую интерпретацию. Так как координаты u, v связаны условием

 , (3)

при этой интерпретации вся плоскость Лобачевского изображается внутренностью круга, ограниченного окружностью

. (4)

Бальтрами показал, что прямые линии плоскости Лобачевского при этом изображаются хордами этого круга, а расстояние токи Р с координатами (u,v) до начала координат 0 равно

. (5)

Хотя Бельтрами не дал формулы для расстояния между двумя произвольными точками и не выяснил, как в его интерпретации изображаются движения плоскости Лобачевского, эта интерпретация Бельтрами явилась первым, правда, неполным, доказательством непротиворечивости плоскости Лобачевского.

Впоследствии появились интерпретации Кэли и Клейна

Лобачевский указывал но связь геометрии с физикой, и хотя его измерения углов с треугольника с громадными астрономическими размерами показали еще справедливость евклидовой геометрии, на самом деле, как оказалось позже, поправки, полученные в рамках теории, основанной именно на неевклидовой геометрии, оказались заметными даже внутри планетной системы, объяснив знаменитую аномалию движения Меркурия, обнаруженную в XIX столетии Леверье.

Неевклидова геометрия сыграла огромную роль во всей современной математике, и фактически в теории геометризованной гравитации марселя Гросмана-Гильберта-Эйнштейна(1913-1915). Довольно неожиданно, еще раньше была установлена вязь кинематики Лоренца-Пуанкаре с геометрией Лобачевского. В 1909 году Зоммерфельд показал, что закон сложения скоростей данной кинематики связан с геометрией сферы мнимого радиуса (подобное соотношение уже отмечали Лобачевский и Бояйи). В 1910 году Варичак указал на аналогию данного закона сложения скоростей и сложения отрезков на плоскости Лобачевского.

Предположение Лобачевского, что реальные геометрические отношения зависят от физической структуры материи, нашло подтверждение не только в космических масштабах. Современная теория квант все с большей настоятельностью выдвигает необходимость применения геометрии, отличной от евклидовой, к проблемам микромира.

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

1.     Александров П.С. Что такое неевклидова геометрия. – М.: ГИТТЛ, 1950.

2.     Ефимов Н.В.  Высшая геометрия. – М.: Наука, 1978.

3.     Заботин И.Н. Лобачевский. – М.: ГИТТЛ, 1956.

4.     Лаптев Б.Л. Н.И. Лобачевский и его геометрия. – М.: Знание, 1976.

5.     Розенфельд Б.А. История неевклидовой геометрии. – М.: Наука, 1976.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

 



Информация о работе Постулаты Евклида