Автор работы: Пользователь скрыл имя, 24 Февраля 2013 в 12:28, курсовая работа
Прошло уже много лет с того момента, когда появилась первая ЭВМ. За это время сменилось уже несколько поколений вычислительных машин. Менялись элементная база, конструктивные решения, языки программирования, программное обеспечение, но основы архитектуры, заложенные при создании машин первого поколения, практически без изменения перешли на машины последующих и успешно работают до настоящего времени. Нет сомнений, что идеи машин первого поколения ещё послужат человеку. Однако всё настоятельнее требуются системы, наделённые элементами интеллекта при обработке колоссального объёма информации и в то же время работающие в темпе управляемых процессов.
Введение…………………………………………………………………………..3
1.Искусственный нейрон………………………………………………………...5
2. Нейрокомпьютеры………………………………………………………….....13
2.1 История нейрокомпьютеров………………………………………………...15
2.2 Преимущества и недостатки нейрокомпьютеров………………………….18
2.3 Практическое применение…………………………………………………..19
3. Нейронные сети……………………………………………………………….20
3.1 Задачи для нейронных сетей………………………………………………..24
3.2 Истинные преимущества нейронных сетей………………………………..29
4. Нейросети и нейрокомпьютеры……………………………………………...31
Заключение……………………………………………………………………….33
Список литературы………………………………………………………………35
Введение
Прошло уже много лет с того момента, когда появилась первая ЭВМ. За это время сменилось уже несколько поколений вычислительных машин. Менялись элементная база, конструктивные решения, языки программирования, программное обеспечение, но основы архитектуры, заложенные при создании машин первого поколения, практически без изменения перешли на машины последующих и успешно работают до настоящего времени. Нет сомнений, что идеи машин первого поколения ещё послужат человеку. Однако всё настоятельнее требуются системы, наделённые элементами интеллекта при обработке колоссального объёма информации и в то же время работающие в темпе управляемых процессов.
В таких прикладных областях деятельности человека, как космология, молекулярная биология, гидрология, охрана окружающей среды, медицина, экономика и многих других, сформулированы проблемы, решение которых потребует вычислительных машин, обладающих колоссальными ресурсами.
На сегодняшний день высокие технические характеристики реализуется только с помощью дорогостоящих уникальных архитектур от CRAY, SGI, Fujitsu, Hitachi с несколькими тысячами процессоров.
В настоящее время концептуально разработаны методы достижения высокого быстродействия, которые охватывают все уровни проектирования вычислительных систем. На самом нижнем уровне – это передовая технология конструирования и изготовления быстродействующей элементной базы и плат с высокой плотностью монтажа.
Теоретически
1.Искусственный нейрон
Основной частью нейрокомпьютера принято считать Искусственные нейроны.
Искусственный нейрон или математический
нейрон Маккалока — Питтса,
Схема искусственного нейрона
1.Нейроны, выходные сигналы которых поступают
на вход данному
2.Сумматор входных сигналов
3.Вычислитель передаточной функции
4.Нейроны, на входы которых подаётся выходной
сигнал данного
5.wi — веса входных сигналов
Искусственный нейрон является прототипом биологического нейрона. Биологический нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и другие органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), и отростков. Выделяют два вида отростков. Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи с 20-ю тысячами других нейронов. Кора головного мозга человека содержит 10—20 миллиардов нейронов.
Математическая модель искусств
Искусственные нейроны обмениваются между собой связями, по которым выходные сигналы одних нейронов поступают на входы других, часто называют синапсами по аналогии со связями между биологическими нейронами. Каждая связь характеризуется своим весом. Связи с положительным весом называются возбуждающими, а с отрицательным — тормозящими. Нейрон имеет один выход, часто называемый аксоном по аналогии с биологическим прототипом. С единственного выхода нейрона сигнал может поступать на произвольное число входов других нейронов.
С математической точки зрения нейрон представляет собой взвешенный сумматор, единственный выход которого определяется через его входы и матрицу весов следующим образом:
y = f(u), где [1]
Здесь xi и wi — соответственно сигналы на входах нейрона и веса входов, функция u называется индуцированным локальным полем, а f(u) - передаточной функцией. Возможные значения сигналов на входах нейрона считают заданными в интервале [0,1]. Они могут быть либо дискретными (0 или 1), либо аналоговыми. Дополнительный вход x0 и соответствующий ему вес w0 используются для инициализации нейрона. Под инициализацией подразумевается смещение активационной функции нейрона по горизонтальной оси, то есть формирование порога чувствительности нейрона. Кроме того, иногда к выходу нейрона специально добавляют некую случайную величину, называемую сдвигом. Сдвиг можно рассматривать как сигнал на дополнительном, всегда нагруженном, синапсе.
Передаточная функция нейрона f(u) определяет зависимость сигнала на выходе нейрона от взвешенной суммы сигналов на его входах. В большинстве случаев она является монотонно возрастающей и имеет область значений [ − 1,1] или[0,1], однако существуют исключения. Также для некоторых алгоритмов обучения сети необходимо, чтобы она была непрерывно дифференцируемой на всей числовой оси. Искусственный нейрон полностью характеризуется своей передаточной функцией. Использование различных передаточных функций позволяет вносить нелинейность в работу нейрона и в целом нейронной сети. [2]
В основном, нейроны классифицируют на основе их положения в топологии сети. Разделяют:
Нейроны характеризуются основными типами передаточных функций.
Линейная функция активации с насыщением
Линейная передаточная функция характеризуется тем, что сигнал на выходе нейрона линейно связан со взвешенной суммой сигналов на его входе.
f(x) = tx
, где t - параметр функции. В искусственных нейронных сетях со слоистой структурой нейроны с передаточными функциями такого типа, как правило, составляют входной слой. Кроме простой линейной функции могут быть использованы её модификации. Например полулинейная функция (если её аргумент меньше нуля, то она равна нулю, а в остальных случаях, ведет себя как линейная) или шаговая (линейная функция с насыщением), которую можно выразить формулой:
При этом возможен сдвиг функции по обеим осям (как изображено на рисунке).
Недостатками шаговой и
Пороговая функция активации
Пороговая передаточная функция, другое название - Функция Хевисайда. Представляет собой перепад. До тех пор пока взвешенный сигнал на входе нейрона не достигает некоторого уровня T — сигнал на выходе равен нулю. Как только сигнал на входе нейрона превышает указанный уровень — выходной сигнал скачкообразно изменяется на единицу. Самый первый представитель слоистых искусственных нейронных сетей — перцептрон[11] состоял исключительно из нейронов такого типа[5]. Математическая запись этой функции выглядит так:
Здесь T = − w0x0 — сдвиг функции активации относительно горизонтальной оси, соответственно под x следует понимать взвешенную сумму сигналов на входах нейрона без учёта этого слагаемого. Ввиду того, что данная функция не является дифференцируемой на всей оси абсцисс, её нельзя использовать в сетях, обучающихся по алгоритму обратного распространения ошибки и другим алгоритмам, требующим дифференцируемости передаточной функции.
Сигмоидальная функция активации
Сигмоидальная передаточная функция одина из самых часто используемых, на данный момент передаточных функций. Введение функций сигмоидального типа было обусловлено ограниченностью нейронных сетей с пороговой функцией активации нейронов — при такой функции активации любой из выходов сети равен либо нулю, либо единице, что ограничивает использование сетей не в задачах классификации. Использование сигмоидальных функций позволило перейти от бинарных выходов нейрона к аналоговым. Функции передачи такого типа, как правило, присущи нейронам, находящимся во внутренних слоях нейронной сети.
Логическую функцию математичес
Здесь t — это параметр функции, определяющий её крутизну. Когда t стремится к бесконечности, функция вырождается в пороговую. При t = 0 сигмоида вырождается в постоянную функцию со значением 0,5. Область значений данной функции находится в интервале (0,1). Важным достоинством этой функции является простота её производной:
То, что производная этой функции может быть выражена через её значение облегчает использование этой функции при обучении сети по алгоритму обратного распространения. Особенностью нейронов с такой передаточной характеристикой является то, что они усиливают сильные сигналы существенно меньше, чем слабые, поскольку области сильных сигналов соответствуют пологим участкам характеристики. Это позволяет предотвратить насыщение от больших сигналов.
Функция гиперболического тангенса
отличается от рассмотренной выше логистической кривой тем, что его область значений лежит в интервале (-1;1). Т.к. верно соотношение
,
то оба графика отличаются лишь масштабом осей. Производная гиперболического тангенса, разумеется, тоже выражается квадратичной функцией значения; свойство противостоять насыщению имеет место точно также.
Радиально-базисная функция передачи принимает в качестве аргумента расстояние между входным вектором и некоторым наперед заданным центром активационной функции. Значение этой функции тем выше, чем ближе входной вектор к центру. В качестве радиально-базисной можно, например, использовать функцию Гаусса:
Здесь — расстояние между центром и вектором входных сигналов . Скалярный параметр σ определяет скорость спадания функции при удалении вектора от центра и называется шириной окна, параметр R определяет сдвиг активационной функции по оси абсцисс. Сети с нейронами, использующими такие функции, называются RBF-сетями. В качестве расстояния между векторами могут быть использованы различные метрики, обычно используется евклидово расстояние:
Здесь xj — j-я компонента вектора, поданного
на вход нейрона, а cj — j-я компонента
вектора, определяющего положение центра
передаточной функции. Соответственно,
сети с такими нейронами называются вероятностными ирег
В реальных сетях активационная функция
этих нейронов может отражать распределение вероятн
Также существуют другие функции передачи
Перечисленные выше функции составляют лишь часть от множества передаточных функций, используемых на данный момент. В число других передаточных функций входят такие как:
Выше описана модель
детерминистического
где распределение вероятности P(u)
a нормировочная константа A(T)