Нейрокомпьютеры

Автор работы: Пользователь скрыл имя, 24 Февраля 2013 в 12:28, курсовая работа

Описание

Прошло уже много лет с того момента, когда появилась первая ЭВМ. За это время сменилось уже несколько поколений вычислительных машин. Менялись элементная база, конструктивные решения, языки программирования, программное обеспечение, но основы архитектуры, заложенные при создании машин первого поколения, практически без изменения перешли на машины последующих и успешно работают до настоящего времени. Нет сомнений, что идеи машин первого поколения ещё послужат человеку. Однако всё настоятельнее требуются системы, наделённые элементами интеллекта при обработке колоссального объёма информации и в то же время работающие в темпе управляемых процессов.

Содержание

Введение…………………………………………………………………………..3
1.Искусственный нейрон………………………………………………………...5
2. Нейрокомпьютеры………………………………………………………….....13
2.1 История нейрокомпьютеров………………………………………………...15
2.2 Преимущества и недостатки нейрокомпьютеров………………………….18
2.3 Практическое применение…………………………………………………..19
3. Нейронные сети……………………………………………………………….20
3.1 Задачи для нейронных сетей………………………………………………..24
3.2 Истинные преимущества нейронных сетей………………………………..29
4. Нейросети и нейрокомпьютеры……………………………………………...31
Заключение……………………………………………………………………….33
Список литературы………………………………………………………………35

Работа состоит из  6 файлов

Курсовой проект.pptx

— 62.72 Кб (Открыть документ, Скачать документ)

Нейрокомпьютеры.doc

— 376.50 Кб (Скачать документ)

Нейрон с пороговой  передаточной функцией может моделировать различные логические функции. Изображения  иллюстрируют, каким образом можно, задав веса входных сигналов и  порог чувствительности, заставить  нейрон выполнять конъюнкцию(логическое «И») и дизъюнкцию(логическое «ИЛИ») над входными сигналами, а также логическое отрицание входного сигнала. Этих трех операций достаточно, чтобы смоделировать абсолютно любую логическую функцию любого числа аргументов.

Схема нейрона,

астроенного на моделирование  логического «И»  


Схема нейрона, настроенного на моделирование логическ

го «ИЛИ»  


Схема нейрона, настроенного на моделирование логического «НЕ»  



 

2. Нейрокомпьютеры

Нейрокомпьютеры - это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида - нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ. Как следствие этого введены специфические связи между элементами, которые являются предметом отдельного рассмотрения. В отличие от классических методов решения задач нейрокомпьютеры реализуют алгоритмы решения задач, представленные в виде нейронных сетей. Это ограничение позволяет разрабатывать алгоритмы, потенциально более параллельные, чем любая другая их физическая реализация. Нейросетевая тематика является междисциплинарной, что обусловило значительные разночтения в общих терминологических подходах. Нейросетевой тематикой занимаются как разработчики вычислительных систем и программисты, так и специалисты в области медицины, финансово-экономические работники, химики, физики и т.п. То, что понятно физику, совершенно не принимается медиком и наоборот - все это породило многочисленные споры, и целые терминологические войны по различным направлениям применения всего, где есть приставка нейро. [8]

В дальнейшем под нейрокомпьютером будем понимать вычислительную систему с архитектурой MSIMD, в которой реализованы два принципиальных технических решения: упрощен до уровня нейрона процессорный элемент однородной структуры и резко усложнены связи между элементами; программирование вычислительной структуры перенесено на изменение весовых связей между процессорными элементами.

Приведем некоторые наиболее устоявшиеся  научные направления нейрокомпьютеров и определений нейровычислительных систем.

Математическая статистика. Нейрокомпьютер - это вычислительная система, автоматически формирующая описание характеристик случайных процессов или их совокупности, имеющих сложные, зачастую многомодальные или вообще априори неизвестные функции распределения.

Математическая логика. Нейрокомпьютер - это вычислительная система алгоритм работы которой представлен логической сетью элементов частного вида - нейронов, с полным отказом от булевых элементов типа И, ИЛИ, НЕ.

Пороговая логика. Нейрокомпьютер - это  вычислительная система, алгоритм решения  задач в которой представлен  в виде сети пороговых элементов  с динамически перестраиваемыми коэффициентами и алгоритмами настройки, независимыми от размерности сети пороговых элементов и их входного пространства.

Вычислительная техника. Нейрокомпьютер - это вычислительная система с MSIMD архитектурой, в которой процессорный элемент однородной структуры упрощен до уровня нейрона, резко усложнены связи между элементами и программирование перенесено на изменение весовых коэффициентов связей между процессорными элементами.

Медицина (нейробиологический подход). Нейрокомпьютер - это вычислительная система представляющая собой модель взаимодействия клеточного ядра, аксонов и дендридов, связанных синаптическими связями (синапсами) (т.е. модель биохимических процессов протекающих в нервных тканях).

Экономика и финансы. Устоявшегося определения нет, но чаще всего под нейровычислителем понимают систему, обеспечивающую параллельное выполнение “бизнес» - транзакций.

Общее определение нейрокомпьютера  может быть представлено в следующем виде:

Нейрокомпьютер - это вычислительная система с  архитектурой аппаратного и программного обеспечения, адекватной выполнению алгоритмов, представленных в нейросетевом логическом базисе. [1]

 

2.1 История нейрокомпьютеров

Нейрокомпьютеры – это ЭВМ нового поколения, качественно  отличающиеся от других классов вычислительных систем параллельного типа тем, что для решения задач они используют не заранее разработанные алгоритмы, а специальным образом подобранные примеры, на которых учатся. Их появление обусловлено объективными причинами: развитие элементной базы, позволяющее на одной плате реализовать персональный компьютер – полнофункциональный компьютер (модель нейрона), и необходимость решения важных практических задач, поставленных действительностью. Попытки создания ЭВМ, моделирующих работу мозга, предпринимались ещё в 40-х гг. специалистами по нейронной кибернетике. Они стремились разработать самоорганизующиеся системы, способные обучаться интеллектуальному поведению в процессе взаимодействия с окружающим миром, причём компонентами их систем обычно являлись модели нервных клеток. Однако зарождавшаяся в это же время вычислительная техника и связанные с нею науки, особенно математическая логика и теория автоматов, оказали сильное влияние на области исследования, связанные с мозгом.

К концу 50-х гг. сформировался логико-символьный подход к моделированию интеллекта. Его развитие создало такие направления, как эвристическое программирование и машинный интеллект, и способствовало угасанию интереса к нейронным сетям. К началу 80-х гг. были созданы условия для возрождения интереса к нейросетевым моделям. Это было связано с накоплением новых данных при экспериментальных исследованиях мозга. Знаменитая книга Н. Винера «Кибернетика» [21] имеет подзаголовок «Управление и связь в животном и машине».

К настоящему времени сформировался  обширный рынок нейросетевых продуктов. Подавляющее большинство продуктов  представлено в виде моделирующего программного обеспечения. Ведущие фирмы разрабатывают также и специализированные нейрочипы или нейроплаты в виде приставок персональным ЭВМ. Наиболее ярким прототипом супернейрокомпьютера является система обработки аэрокосмических изображений, разработанная в США по программе «Силиконовый мозг». Объявленная производительность супернейрокомпьютера составляет 80 PFLOPS (80∙1015 операций с плавающей точкой в 1 с) при физическом объёме, равном объёму человеческого мозга, и потребляемой мощности 20 Вт.

В июле 1992 г. в Японии была принята  Пятая Программа (действующая и  поныне), связанная с созданием координационного исследовательского центра по реализации международного проекта Real World Computing Partnership (RWCP), основной целью которого являлась разработка практических методов решения реальных задач на основе гибких и перспективных информационных технологий.

В настоящее время в рамках развития этого проекта создана трансконтинентальная сеть на базе гетерогенной вычислительной среды, объединяющей Суперкомпьютерный центр в Штутгарте (Германия), Компьютерный центр в Питсбурге (шт. Пенсильвания), Электротехническую лабораторию в Тшукубе (Япония), Компьютерный центр в Манчестере (Великобритания), в которой часть пользовательских компьютеров выполнена по нейросетевой технологии. Пиковая производительность образованного сверхсуперкомпьютера составила 2.2 TFLOPS.

Считается, что теория нейронных  сетей, как научное направление, впервые была обозначена в классической работе Мак Каллока и Питтса 1943 г., в которой утверждалось, что, в принципе, любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. В 1958 г. Фрэнк Розенблатт придумал нейронную сеть, названную перцептроном, и построил первый нейрокомпьютер Марк-1 . Перцептрон был предназначен для классификации объектов. На этапе обучения “учитель” сообщает перцептрону к какому классу принадлежит предъявленный объект. Обученный перцептрон способен классифицировать объекты, в том числе не использовавшиеся при обучении, делая при этом очень мало ошибок.

Большую роль в развитии нейрокомпьютинга сыграла монография Розенблатта [23].

Примерно в это же время вышла работа Минского и Пейперта, указавшая ограниченные возможности простейшего перцептрона. Результаты Минского и Пейперта погасили энтузиазм большинства исследователей, особенно тех, кто работал в области вычислительных наук.

С начала 80-х годов вновь привлекло интерес исследователей, что связано с энергетическим подходом Хопфилда и алгоритмом обратного распространения для обучения многослойного перцептрона (многослойные сети прямого распространения), впервые предложенного Вербосом. При этом важную роль сыграли работы группы PDP (Parallel Distributed Processing) . В них рассматривались нейронные сети, названные многослойными перцептронами, которые оказались весьма эффективными для решения задач распознавания, управления и предсказания. Многослойные перцептроны занимают ведущее положение, как по разнообразию возможностей использования, так и по количеству успешно решенных прикладных задач. [7]

 

 

2.2 Преимущества и недостатки нейрокомпьютеров

По  сравнению с обычными компьютерами нейрокомпьютеры обладают рядом  преимуществ.

Во  первых — высокое быстродействие, связанное с тем, что алгоритмы  нейроинформатики обладают высокой степенью параллельности.

Во  вторых — нейросистемы делаются очень  устойчивыми к помехам и разрушениям.

В третьих — устойчивые и надежные нейросистемы могут создаваться  из ненадежных элементов, имеющих значительный разброс параметров.

Несмотря  на перечисленные выше преимущества эти устройства имеют ряд недостатков:

1. Они создаются специально для  решения конкретных задач, связанных с нелинейной логикой и теорией самоорганизации. Решение таких задач на обычных компьютерах возможно только численными методами. [5]

2. В силу своей уникальности эти устройства достаточно дорогостоящи.

 

 

2.3 Практическое применение нейрокомпьютеров

Несмотря  на недостатки, нейрокомпьютеры могут  быть успешно использованы в различных областях:

Управление  в режиме реального времени: самолетами, ракетами и технологическими процессами непрерывного производства (металлургического, химического и др.);

Распознавание образов: человеческих лиц, букв и иероглифов, сигналов радара и сонара, отпечатков пальцев в криминалистике, заболеваний  по симптомам (в медицине) и местностей, где следует искать полезные ископаемые (в геологии, по косвенным признакам);

Прогнозы: погоды, курса акций (и других финансовых показателей), исхода лечения, политических событий (в частности результатов выборов), поведения противников в военном конфликте и в экономической конкуренции;

Оптимизация и поиск наилучших вариантов: при конструировании технических  устройств, выборе экономической стратегии  и при лечении больного.

Нейрокомпьютеры бывают двух типов:

Большие универсальные компьютеры, построенные на множестве нейрочипов;

Нейроимитаторы, представляющие собой программы  для обычных компьютеров, имитирующие работу нейронов. В основе такой программы заложен алгоритм работы нейрочипа с определенными внутренними связями. На вход такой программы подаются исходные данные и на основании закономерностей, связанных с принципом работы головного мозга, делаются выводы о правомерности полученных результатов. [3]

 

 

3. Нейронные сети

 

Термин  «нейронные сети» у многих ассоциируется с фантазиями об андроидах и бунте роботов, о машинах, заменяющих и имитирующих человека. Это впечатление усиливают многие разработчики нейросистем, рассуждая о том, как в недалеком будущем, роботы начнут осваивать различные виды деятельности, просто наблюдая за человеком.

Если  переключиться на уровень повседневной работы, то нейронные сети это всего-навсего сети, состоящие из связанных между собой простых элементов формальных нейронов. Большая часть работ по нейроинформатике посвящена переносу различных алгоритмов решения задач на такие сети.

В основу концепции положена идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Коротко эту мысль можно выразить так: «структура связей все, свойства элементов ничто».

Совокупность  идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь). С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи.

С коннекционизмом тесно связан следующий  блок идей:

однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);

надежные  системы из ненадежных элементов  и «аналоговый ренессанс» использование простых аналоговых элементов;

«голографические» системы, при разрушении случайно выбранной части система сохраняет свои свойства.

Предполагается, что широкие возможности систем связей компенсируют бедность выбора элементов, их ненадежность и возможные  разрушения части связей.

Для описания алгоритмов и устройств в выработана специальная «схемотехника», в которой элементарные устройства (сумматоры, синапсы, нейроны и т.п.) объединяются в сети, предназначенные для решения задач. Для многих начинающих кажется неожиданным, что ни в аппаратной реализации нейронных сетей, ни в профессиональном программном обеспечении эти элементы вовсе не обязательно реализуются как отдельные части или блоки. Используемая идеальная схемотехника представляет собой особый язык описания нейронных сетей и их обучения. При программной и аппаратной реализации, выполненные на этом языке описания переводятся на более подходящие языки другого уровня. [2]

прил. ВНК Эмбрион.docx

— 17.08 Кб (Открыть документ, Скачать документ)

Содержание.doc

— 103.00 Кб (Открыть документ, Скачать документ)

Титульный лист.doc

— 26.50 Кб (Открыть документ, Скачать документ)

Информация о работе Нейрокомпьютеры