Автор работы: Пользователь скрыл имя, 05 Марта 2013 в 12:17, курсовая работа
Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий. Не у кого не вызывает сомнения тот факт, что движение к информационному обществу - это путь в будущее человеческой цивилизации
Введение
4
1 Теоретические аспекты изучения реляционных моделей данных: сущность, понятие и виды
6
1.1 Понятие и сущность модели данных в информационных технологиях
6
1.2 Базовые понятия реляционной модели данных
10
1.3 Свойства отношений реляционной модели данных
19
2 Создание реляционной базы данных в программном комплексе Microsoft Ассеss
23
2.1 Общее понятие о реляционной базе данных
23
2.2 Создание реляционной базы данных
26
2.3 Создание запросов в реляционной базе данных
29
Заключение
36
Список использованных источников
Наименьшая единица данных реляционной модели — это отдельное атомарное (неразложимое) для данной модели значение данных. Доменом называется множество атомарных значений одного и того же типа. Иными словами, домен представляет собой допустимое потенциальное множество значений данного типа. Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с диапазонными типами и множествами, имеющимися в ряде языков программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат «истина», то элемент данных является элементом домена.
Следует отметить также семантическую нагрузку понятия домена: данные счита ются сравнимыми только в том случае, когда они относятся к одному домену. Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла. Понятие домена используется далеко не во всех СУБД. В качестве примера реляци онных баз данных, использующих домены, можно привести Огасle и InterBase.
Атрибуты, схема отношения, схема базы данных. Столбцы отношения называют атрибутами, им присваиваются имена, по которым к ним затем производится обращение.
Список имен атрибутов отношения с указанием имен доменов (или типов, если домены не поддерживаются) называется схемой отношения.
Степень отношения — это число его атрибутов. Отношение степени один называют унарным, степени два — бинарным, степени три — тернарным,..., а степени п — n-арным.
Схемой базы данных называется множество именованных схем отношений.
Кортеж, соответствующий данной схеме отношения, представляет собой множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. «Значение» является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым степень кортежа, то есть число элементов в нем, совпадает со степенью соответствующей схемы отношения. Иными словами, кортеж — это набор именованных значений заданного типа. Схему отношения иногда называют также заголовком отношения, а отношение как набор кортежей — телом отношения. Понятие схемы отношения напоминает понятие структурного типа данных в языках про граммирования (структура в С/С++, запись в Pascal). Однако в реляционных базах данных имя схемы отношения всегда совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определения схемы базы Данных изменяются только отношения-экземпляры. В них могут появляться новые и удаляться или модифицироваться существующие кортежи. Однако во многих реализациях допускается и изменение схемы базы данных: определение новых и изменение существующих схем отношения. Это принято называть эволюцией схемы базы данных [11].
Поскольку отношение с математической точки зрения является множеством, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно заданный момент времени. Таким образом, в отношении всегда должен присутствовать некоторый атрибут (или набор атрибутов), однозначно определяющий каждый кортеж отношения и обеспечивающий уникальность строк таблицы. Такой атрибут (или набор атрибутов) называется первичным ключом отношения.
Для каждого отношения свойством уникальности обладает, по крайней мере, полный набор его атрибутов. Однако требуется обеспечить и условие минимальности. Поэтому, как правило, в отношении всегда имеется один атрибут, обладающий свойством уникальности и являющийся первичным ключом.
В зависимости от количества атрибутов, входящих в ключ, различают простые и сложные (или составные) ключи.
Простой ключ — ключ, содержащий только один атрибут. В общем случае операции объединения выполняются быстрее в том случае, когда в качестве ключаис пользуется самый короткий и самый простой из возможных типов данных. С этой точки зрения наилучшим образом подходит целочисленный тип, который имеет аппаратную поддержку для выполнения над ним логических операций.
Сложный или составной ключ — ключ, состоящий из нескольких атрибутов. Набор атрибутов, обладающий свойством уникальности, но не обладающий минимальностью, называется суперключом. Суперключ — сложный (составной) ключ с большим числом столбцов, чем необходимо для того, чтобы быть уникальным идентификатором. Такие ключи нередко используются на практике, так как избыточность может оказаться полезной пользователю.
В зависимости от того, содержит ли атрибут, являющийся первичным ключом, какую-либо информацию, различают искусственные и естественные ключи.
Искусственный или суррогатный ключ — ключ, созданный самой СУБД или пользователем с помощью некоторой процедуры, который сам по себе не содержит ин формации. Искусственный ключ используется для создания уникальных идентификаторов строк, когда сущность должна быть описана полностью, чтобы однозначно идентифицировать конкретный элемент. Искусственный ключ часто используют вместо значимого сложного ключа, который является слишком громоздким, чтобы использоваться в реальной базе данных. Система поддерживает искусственный ключ, но он никогда не показывается пользователю [9].
Естественный ключ — ключ, в который включены значимые атрибуты и который, таким образом, содержит информацию.
Каждый из типов первичных ключей имеет свои преимущества и недостатки; их обсуждению посвящено большое количество публикаций. Мы не будем проводить подробное их сравнение, а отметим лишь основные плюсы и минусы каждого из видов ключей.
Основными достоинствами
естественных ключей является то, что
они несут вполне определенную информацию
и их использование не приводит к
необходимости добавлять в
Основным же недостатком естественных ключей является то, что их использование весьма затруднительно в случае изменчивости предметной области. Следует пони мать, что значения атрибутов первичного ключа не должны изменяться. То есть однажды заданное значение первичного ключа для кортежа не может быть позже изменено. Такое требование ставится в основном для поддержания целостности базы данных. Связь между отношениями обычно устанавливается именно по первичному ключу, и его изменение приведет к нарушению этих связей или к необходимости изменения записей в нескольких таблицах. Даже в сравнительно простых базах данных это может вызвать ряд трудноразрешимых проблем. В некоторых реляционных СУБД допускается изменение первичного ключа. Иногда это бывает действительно полезно. Однако прибегать к этому следует лишь в случае крайней необходимости.
Типичным примером изменчивой предметной области, в которой для сущности невозможно определить неизменный естественный ключ, является любая область, где в качестве сущности выступает человек. Действительно, невозможно определить для человека набор атрибутов, которые были бы уникальны и неизменны на протяжении всей его жизни.
Второй, довольно существенный недостаток естественных ключей состоит в том, что, как правило, уникальные естественные ключи являются составными и содержат строковые атрибуты. Как уже отмечалось выше, максимальная скорость выполнения операций над данными обеспечивается при использовании простых целочисленных ключей. Таким образом, с точки зрения быстродействия системы естественные ключи часто оказываются неоптимальными.
Оба недостатка естественных ключей можно преодолеть, определив в отношениях суррогатные ключи, представляющие собой некоторый универсальный атрибут, как правило, целочисленного типа, который не зависит ни от предметной области, ни, тем более, от структуры отношения, которое он идентифицирует. Таким образом, можно обеспечить уникальность и неизменность ключа (раз он никаким образом не зависит от предметной области, то никогда не возникнет необходимость изменять его). Однако за это приходится платить избыточностью данных в таблицах. Следует заметить, что во многих практических реализациях реляционных СУБД до пускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.
В любой из таблиц может оказаться несколько наборов атрибутов, которые можно выбрать в качестве ключа. Такие наборы называются потенциальными или альтернативными ключами.
Нередко в отношениях определяются так называемые вторичные ключи. Вторичный ключ представляет собой комбинацию атрибутов, отличную от комбинации, составляющей первичный ключ. Причем вторичные ключи не обязательно обладают свойством уникальности. При их определении могут задаваться следующие ограничения:
UNIQUE — ограничение уникальности, значения вторичных ключей при дан ном ограничении не могут дублироваться;
NOT NULL — при данном ограничении ни один из атрибутов, входящих в со став вторичного ключа, не может принимать значение NULL.
Перекрывающиеся ключи — сложные ключи, которые имеют один или несколько общих столбцов.
В реляционной модели данные представляются в виде совокупности взаимосвязанных таблиц. Подобное взаимоотношение между таблицами называется связью (rilationship). Таким образом, еще одним важным понятием реляционной модели является связь между отношениями.
При рассмотрении связанных таблиц важное значение имеет понятие внешнего ключа. Рассмотрим его более подробно.
В базах данных одни и
те же имена атрибутов часто
Внешние ключи используются
для установления логических связей
между отношениями. Связь между
двумя таблицами
Так же как и любые другие ключи, внешние ключи могут быть простыми либо составными.
Часто связь между отношениями
устанавливается по первичному ключу,
то есть значениям внешнего ключа
одного отношения присваиваются
значения первичного ключа другого
отношения. Однако это не является обязательным
— в общем случае связь может
устанавливаться также и с
помощью вторичных ключей. Кроме
того, при установлении связей между
таблицами необязательно
Чтобы информация, хранящаяся в базе данных, была однозначной и непротиворечивой, в реляционной модели устанавливаются некоторые ограничительные условия. Ограничительные условия — это правила, определяющие возможные значения данных. Они обеспечивают логическую основу для поддержания корректных значений данных в базе. Ограничения целостности позволяют свести к минимуму ошибки, возникающие при обновлении и обработке данных.
Важнейшими ограничениями целостности данных являются: категорийная целостность; ссылочная целостность.
Ограничение категорийной целостности заключается в следующем. Кортежи отношения представляют в базе данных элементы определенных объектов реального мира или, в соответствии с терминологией реляционных СУБД, категорий. Первичный ключ таблицы однозначно определяет каждый кортеж и, следовательно, каждый элемент категории. Таким образом, для извлечения данных, содержащихся в строке таблицы, или для манипулирования этими данными необходимо знать значение ключа для этой строки. Поэтому строка не может быть занесена в базу данных до тех пор, пока не будут определены все атрибуты ее первичного ключа. Это правило называется правилом категорийной целостности и кратко формулируется следующим образом: никакой атрибут первичного ключа строки не может быть пустым.
Второе условие накладывает на внешние ключи ограничения для обеспечения целостности данных, называемой ссылочной целостностью.
Если две таблицы связаны между собой, то внешний ключ таблицы должен содержать только те значения, которые уже имеются среди значений ключа, по которому осуществляется связь. Если корректность значений внешних ключей не контролируется СУБД, то может нарушиться ссылочная целостность данных. Ограничения категорийной и ссылочной целостности должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением первичного ключа. Что же касается ссылочной целостности, то здесь обеспечение целостности выглядит несколько сложнее. При обновлении ссылающегося отношения (при вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. А вот при удалении кортежа из отношения, на которое ведет ссылка, возможно использовать один из трех подходов, каждый из которых поддерживает целостность по ссылкам: