Контрольная работа по "Статистике"

Автор работы: Пользователь скрыл имя, 24 Января 2012 в 11:18, контрольная работа

Описание

При проведении статистического наблюдения за деятельностью коммерческих банков одного из регионов РФ за исследуемый период получены выборочные данные об объеме кредитных вложений и сумме прибыли по 30-ти банкам (выборка 5%-ная, механическая).
В проводимом статистическом исследовании эти банки выступают как единицы выборочной совокупности. Генеральную совокупность образуют все коммерческие банки региона. Анализируемыми признаками изучаемых единиц совокупности являются прибыль и собственный капитал банка.

Работа состоит из  1 файл

Контрольная работа вар.18.doc

— 706.00 Кб (Скачать документ)

                                                  ,                                                               (9)

где  – общая дисперсия признака Y,

        – межгрупповая (факторная) дисперсия признака Y.

      Значения  показателя изменяются в пределах . При отсутствии корреляционной связи между признаками Х и Y имеет место равенство =0, а при наличии функциональной связи между ними - равенство =1.

     Общая дисперсия характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле

                             ,                                               (10)

где  yi – индивидуальные значения результативного признака;

        – общая средняя значений результативного признака;

         n – число единиц совокупности.

     Общая средняя  вычисляется как средняя арифметическая простая по всем единицам совокупности:

                                                                                    (11)

или как средняя  взвешенная по частоте групп интервального  ряда:

                                                                   (12)

      Для вычисления удобно использовать формулу (11), т.к. в табл. 8 (графы 3 и 4 итоговой строки) имеются значения числителя и знаменателя формулы.

      Расчет  по формуле (11):

      

     Для расчета общей дисперсии  применяется вспомогательная таблица 12.  

     Таблица 12

Вспомогательная таблица для расчета общей  дисперсии

Номер

банка

п/п

Объём собственного капитала, млн руб.
1 2 3 4 5
1 3900 -536 287296 15210000
2 4500 64 4096 20250000
3 3000 -1436 2062096 9000000
4 2300 -2136 4562496 5290000
5 3700 -736 541696 13690000
6 3200 -1236 1527696 10240000
7 3780 -656 430336 14288400
8 4000 -436 190096 16000000
9 3100 -1336 1784896 9610000
10 4600 164 26896 21160000
11 2200 -2236 4999696 4840000
12 5280 844 712336 27878400
13 4700 264 69696 22090000
14 4400 -36 1296 19360000
15 6500 2064 4260096 42250000
16 5000 564 318096 25000000
17 2500 -1936 3748096 6250000
18 1800 -2636 6948496 3240000
19 4200 -236 55696 17640000
20 5600 1164 1354896 31360000
21 7962 3526 12432676 63393444
22 5850 1414 1999396 34222500
23 400 -4036 16289296 160000
24 4900 464 215296 24010000
25 8400 3964 15713296 70560000
26 7088 2652 7033104 50239744
27 5100 664 440896 26010000
28 4300 -136 18496 18490000
29 6020 1584 2509056 36240400
30 4800 364 132496 23040000
Итого 133080 0 90670008 681012888
 

      Расчет общей дисперсии по формуле (10):

     Общая дисперсия может быть также рассчитана по формуле

,

     где средняя из квадратов значений результативного признака,

           квадрат средней величины значений результативного признака.

     Для демонстрационного примера 

     Тогда

     Межгрупповая  дисперсия измеряет систематическую  вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка). Воздействие фактора Х на результативный признак Y проявляется в отклонении групповых средних от общей средней . Показатель вычисляется по формуле

                             ,                                                (13)

     где     –групповые средние,

       – общая средняя,

      –число единиц в j-ой группе,

     kчисло групп.

     Для  расчета  межгрупповой  дисперсии  строится  вспомогательная таблица 13 При этом используются  групповые средние значения из табл. 8 (графа 5). 
 

     Таблица 13

     Вспомогательная таблица для расчета межгрупповой дисперсии

Группы  банков по Сумме прибыли, млн руб. Число банков,

Среднее значение
в группе
1 2 3 4 5
50 – 110 3 2100 -2336 16370688
110 – 170 6 3080 -1356 11032416
170 – 230 12 4340 -96 110592
230 – 290 7 5694 1258 11077948
290 - 350 2 8181 3745 28050050
Итого 30     66641699

      Расчет межгрупповой дисперсии по формуле (11):

     Расчет  эмпирического коэффициента детерминации по формуле (9):

  

или 73,4%

   Вывод. 73,4% вариации объёма собственного капитала банков обусловлено вариацией прибыли, а 26,7% – влиянием прочих неучтенных факторов.

     Эмпирическое  корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле

                                                                                  (14)

     Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 14):

     Таблица 14

     Шкала Чэддока

h 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Характеристика

силы  связи

Слабая Умеренная Заметная Тесная Весьма тесная

     Расчет  эмпирического корреляционного  отношения  по формуле (14):

     

 

      Вывод. Согласно шкале Чэддока связь между суммами прибыли и  объёмом собственного капитала банков является тесной.

3. Оценка статистической  значимости коэффициента  детерминации 

.

      Показатели  и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи  , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.

      Проверка  выборочных показателей на их неслучайность  осуществляется в статистике с помощью  тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации  служит дисперсионный F-критерий Фишера, который рассчитывается по формуле

                                          ,

где  n – число единиц выборочной совокупности,

    m – количество групп,

       – межгрупповая дисперсия,

      – дисперсия j-ой группы (j=1,2,…,m),

       – средняя арифметическая групповых дисперсий.

      Величина  рассчитывается, исходя из правила сложения дисперсий:

                                           ,

где – общая дисперсия.

      Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия  для различных комбинаций  значений  , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).

      Если  Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков,  сделанные на основе выборки, можно распространить на всю генеральную совокупность.

Информация о работе Контрольная работа по "Статистике"