Автор работы: Пользователь скрыл имя, 01 Октября 2011 в 20:19, курсовая работа
Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В о
1. Понятие средней величины. Область применения средних величин в 5
статистическом исследовании
2. Виды средних величин и методы их расчета 7
3. Понятие вариации. Показатели вариации 14
4. Виды (показатели) дисперсий и правило их сложения
- если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
- средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
- если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.
Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.
Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:
(5.6)
К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:
В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид
(5.7)
Данная
формула используется в тех случаях,
когда веса (или объемы явлений) по
каждому признаку не равны. В исходном
соотношении для расчета
Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:
|
Получаем
Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:
Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.
Для простой средней геометрической
Для взвешенной средней геометрической
(5.9)
Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).
Формула простой средней квадратической
(5.10)
Формула взвешенной средней квадратической
(5.11)
В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:
а) установление обобщающего показателя совокупности;
б) определение для данного обобщающего показателя математического соотношения величин;
в) замена индивидуальных значений средними величинами;
г) расчет
средней с помощью
3. Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности. Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость. Изучение вариации в статистической практике позволяет установить зависимость между изменением, которое происходит в исследуемом признаке, и теми факторами, которые вызывают данное изменение.
Для измерения вариации признака используют как абсолютные, так и относительные показатели.
К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.
Размах вариации R. Это самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:
(6.1)
Размах вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.
Среднее линейное отклонение d, которое вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности. Эта величина определяется как средняя арифметическая из абсолютных значений отклонений от средней. Так как сумма отклонений значений признака от средней величины равна нулю, то все отклонения берутся по модулю.
Формула среднего линейного отклонения (простая)
(6.2)
Формула среднего линейного отклонения (взвешенная)
(6.3)
При использовании показателя среднего линейного отклонения возникают определенные неудобства, связанные с тем, что приходится иметь дело не только с положительными, но и с отрицательными величинами, что побудило искать другие способы оценки вариации, чтобы иметь дело только с положительными величинами. Таким способом стало возведение всех отклонений во вторую степень. Обобщающие показатели, найденные с использованием вторых степеней отклонений, получили очень широкое распространение. К таким показателям относятся среднее квадратическое отклонение и среднее квадратическое отклонение в квадрате , которое называют дисперсией.
Средняя квадратическая простая
(6.4)
Средняя квадратическая взвешенная
(6.5)
Дисперсия есть не что иное, как средний квадрат отклонений индивидуальных значений признака от его средней величины.
Формулы дисперсии взвешенной и простой :
(6.6)
Расчет дисперсии можно упростить. Для этого используется способ отсчета от условного нуля (способ моментов), если имеют место равные интервалы в вариационном ряду.
Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации (V), выраженные в относительных величинах, особенно для целей сравнения колеблемости различных признаков одной и той же совокупности или для сравнения колеблемости одного и того же признака в нескольких совокупностях.
Данные показатели рассчитываются как отношение размаха вариации к средней величине признака (коэффициент осцилляции), отношение среднего линейного отклонения к средней величине признака (линейный коэффициент вариации), отношение среднего квадратического отклонения к средней величине признака (коэффициент вариации) и, как правило, выражаются в процентах.
Формулы
расчета относительных
(6.7)
где VR - коэффициент осцилляции; - линейный коэффициент вариации; - коэффициент вариации.
Из приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака.
В
статистической практике наиболее часто
применяется коэффициент вариации. Он
используется не только для сравнительной
оценки вариации, но и для характеристики
однородности совокупности. Совокупность
считается однородной, если коэффициент
вариации не превышает 33% (для распределений,
близких к нормальному).
4. В статистическом исследовании очень часто бывает необходимо не только изучить вариации признака по всей совокупности, но и проследить количественные изменения признака по однородным группам совокупности, а также и между группами. Следовательно, помимо общей средней для всей совокупности необходимо просчитывать и частные средние величины по отдельным группам.
Различают три вида дисперсий:
- общая;
- средняя внутригрупповая;
- межгрупповая.
Общая дисперсия ( ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле
где - общая средняя арифметическая всей исследуемой совокупности.
Средняя внутригрупповая дисперсия ( ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( ), затем рассчитывается средняя внутригрупповая дисперсия :
(6.9)
где ni - число единиц в группе
Межгрупповая дисперсия (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле
(6.10)
где - средняя величина по отдельной группе.
Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:
(6.11)
Данное
соотношение отражает закон, который
называют правилом сложения дисперсий.
Согласно этому закону (правилу), общая
дисперсия, которая возникает под влиянием
всех факторов, равна сумме дисперсий,
которые появляются как под влиянием признака-фактора,
положенного в основу группировки, так
и под влиянием других факторов. Благодаря
правилу сложения дисперсий можно определить,
какая часть общей дисперсии находится
под влиянием признака-фактора, положенного
в основу группировки.
5. Заключение
Средняя величина – величина абстрактная, т.к. характеризует значение признака у некоторой обезличенной абстрактной единицы совокупности. Но абстракция есть необходимая ступень любого научного исследования. В средней величине, как во всякой абстракции, осуществляется диалектическое единство отдельного и общего.