Автор работы: Пользователь скрыл имя, 03 Марта 2013 в 20:42, реферат
В моментных рядах исследуется разность явлений, отражающая изменение уровня ряда между определёнными датами. Накопленные итоги здесь не рассчитываются.
Динамический интервальный ряд содержит значения показателей за определенные периоды времени.
Теоретическая часть………………………………………………………………3
I. Ряды динамки: тренд, методы выравнивания рядов динамики……………3
II. Сопоставимость уровней динамического ряда. Абсолютные показатели динамики………………………………………………………………………5
III. Относительные показатели динамики. Абсолютное значение однопроцентного прироста…………………………………………….……8
IV. Методы выявления основных тенденций динамического ряда……………9
Практическая часть……………………………………………………………...13
Список литературы……………………………………………………..……….17
Реферат по предмету «Статистика»
Тема: «Ряды динамики»
М.В.
Группы 3
Специальность: финансы и кредит
Дата сдачи______________
Оценка________________
Содержание
Теоретическая часть………………………………………………………………3
Практическая часть………………………………
Список литературы…………………………………
Теоретическая часть
I. Ряды динамки: тренд, методы выравнивания рядов динамики.
Ряды динамики – это статистические данные, отображающие развитие явления во времени.
Ряды динамики представляют собой упорядоченную во времени совокупность значений, характеризующих уровень показателей развития изучаемого явления.
Состоят из двух основных элементов:
t – показатель времени (название месяца, года…)
y – конкретные значения показателей изучаемого явления (уровни ряда).
Динамические ряды характеризуются:
1. В зависимости от
характера показателей:
2. В зависимости от периода: моментные и интервальные ряды динамики.
Динамический моментный ряд отражает значения показателей на определенный момент времени.
В моментных рядах исследуется разность явлений, отражающая изменение уровня ряда между определёнными датами. Накопленные итоги здесь не рассчитываются.
Динамический интервальный ряд содержит значения показателей за определенные периоды времени.
В интервальном ряду уровни можно суммировать – получать накопленные итоги.
Ряды динамики могут быть полными и неполными.
Полный – это ряд динамики, в котором одноименные моменты времени или периоды времени строго следят один за другим в календарном порядке или равноотстоят друг от друга.
Неполный – это ряд, в котором уровни зафиксированы в не равноотстоящие моменты или периоды времени.
Тренд – это долговременная компонента ряда динамики. Она характеризует основную тенденцию его развития, при этом остальные компоненты рассматриваются только как мешающие процедуре его определения. При наличии ряда наблюдаемых значений для различных моментов времени следует найти подходящую трендовую кривую, которая сгладила бы остальные колебания.
В социально-экономических рядах динамики можно наблюдать тенденции трех видов:
среднего уровня – аналитически выражается с помощью математической функции, вокруг которой варьируют фактические уровни исследуемого явления;
дисперсии – представляет собой тенденцию изменения отклонений между эмпирическими уровнями и детерминированной компонентой ряда;
автокорреляции – является тенденция
изменения связи между
Принципы построения динамических рядов:
1. уровни должны быть представлены в однородных величинах;
2. необходима одинаковая полнота охвата различных частей явления.
Одни из основных показателей, характеризующих динамические ряды, – средние уровни. Они рассчитываются в зависимости от вида временного ряда:
1. для интервального ряда динамики абсолютных показателей средний уровень ряда рассчитывается по формуле простой средней арифметической:
_ ∑y
y = n ,
где n – число уровней ряда;
2. для моментного динамического ряда средний уровень рассчитывается по формуле средней хронологической:
_ y1 yn
y = 2 + y2 + y3 + … + yn – 1 – 2
n – 1
где n – число дат;
3. средний уровень моментного ряда с неравными интервалами рассчитывается по формуле средней арифметической взвешенной. В качестве весов берется продолжительность промежутков времени между временными моментами изменений в уровнях динамического ряда:
_ ∑yt
y = ∑t
где t – продолжительность периода (дни, месяцы), в течение которого уровень не изменялся.
II. Сопоставимость уровней динамического ряда. Абсолютные показатели динамики.
Важнейшее условие построения динамических рядов – сопоставимость уровней рядов, относящихся к различным периодам.
Сопоставимость уровней динамического ряда по периодам времени состоит в том, чтобы все показатели исчислялись по одним и тем же периодам времени (для интервальных рядов) или на одну и ту же дату (для моментных рядов).
Сопоставимость уровней динамического ряда по единицам времени заключается в том, чтобы все единицы совокупности, включенные в изучаемые показатели рядов динамики, были однообразными, то есть имели качественно однородный статус во всех периодах времени, входящих в динамический ряд.
Таким образом, уровни должны быть представлены в однородных величинах, и должна иметь место одинаковая полнота охвата различных частей явления.
Для того, чтобы анализ ряда был объективен, нужно учитывать события, приводящие к несопоставимости.
Наиболее характерные случаи:
Средний уровень ряда динамики
_
(y – средняя хронологическая)
В моментном ряду динамики:
y1 + yn n-1
_
y = Ѕ y1 + y2 + . . . + yn-1 + Ѕ yn = 2 + ∑ yi
n – 1 I=2
n – 1
_
y = (y1 + y2) t1 + (y2 + y3) t2 + . . . + (yn-1 + yn) tn-1 = ∑ (yi + yi +1) t
2 (t1 + t2 + t3 + . . . + tn-1) n-1
2 ∑
t=1
где yi , yn – уровни ряда динамики;
ti – длительность интервала времени между уровнями.
В интервальном ряду динамики:
_
y = ∑ yi
I=1
_
y = ∑ yi ti
I=1
∑ ti
Абсолютные и относительные показатели динамики, используемые для характеристики интенсивности развития во времени:
– абсолютный прирост;
– коэффициент роста;
– темп роста;
– темп прироста;
– абсолютное значение одного процента прироста.
Абсолютный прирост представляет собой скорость изменения ряда, изменение текущего значения признака по сравнению с значением признака, принятым за базу сравнения.
В зависимости от базы сравнения различают: базисные показатели, которые характеризуют итоговый результат всех изменений в уровнях ряда от периода базисного уровня до данного периода.
Определяется по формуле:
ΔБ = yi – y0
yi – уровень сравниваемого периода;
y0 – уровень базисного периода;
цепные показатели, характеризующие интенсивность изменения уровня разных периодов по отношению друг к другу в пределах исследуемого промежутка времени.
Скорость роста – это абсолютный прирост с переменной базой (цепной):
Δц = yi – yi-1
yi – уровень сравниваемого периода;
yi–1 – уровень предшествующего периода.
III. Относительные показатели динамики. Абсолютное значение однопроцентного прироста.
Систему абсолютных и
относительных показателей
Относительные показатели динамики:
– коэффициент роста (Кi) показывает относительную скорость изменения ряда и определяются как отношение данного уровня к предыдущему или базисному:
1. Коэффициент роста базисный определяется по формуле:
yi
К(Б) = y0
yi – уровень сравниваемого периода;
y0 – уровень базисного периода;
2. коэффициент роста цепной определяется по формуле:
yi
К(Ц) = yi-1
yi – уровень сравниваемого периода;
yi-1 – уровень предшествующего периода;
– темп роста представляет собой коэффициент роста, выраженный в процентах:
Тр = К * 100%
Где К – коэффициент роста;
– темп прироста (Тп) определяется как отношение абсолютного прироста данного уровня к предыдущему или базисному:
3. темп прироста базисный рассчитывается по формуле
yi – y0
Tπ (б) = y0
yi – yi-1
Tπ (б) = yi-1 * 100%
Темп прироста высчитывается как разность между темпом роста и 100% или между коэффициентом роста и единицей:
Tп = Тр – 100%
Где Тр – темп роста;
Тп = Кi – 1
где Кi – коэффициент роста.
Для характеристики интенсивности развития во времени рассчитывается также абсолютное значение одного процента прироста (Аi), служащее косвенной мерой базисного уровня. Он представляет собой 1/100 часть базисного уровня и рассчитывается по формуле:
yi – yi–1 yi – yi–1 yi–1
Аi = Tпi/(i-1) = yi – yi–1 100% = 100 = 0,01yi-1
yi–1
IV. Методы выявления основных тенденций динамического ряда.
Выявление основной тенденции динамического ряда – это важный аспект анализа динамических рядов. Для этого используют следующие методы.
1. Метод укрупнения интервалов и расчет средних для каждого укрупненного интервала.
Сущность метода: исходный ряд динамики преобразуется и заменяется другими, состоящими из других уровней, относящихся к укрупненным периодам или моментам времени. При этом уровни ряда за укрупненные периоды или моменты времени могут представлять собой суммарные либо средние показатели. В любом случае рассчитанные таким образом уровни ряда более отчетливо выявляют тенденции, поскольку при суммировании или определении средних взаимопогашаются и уравновешиваются сезонные и случайные колебания.
2. Метод скользящей средней.
Скользящая средняя – это динамическая средняя. Последовательно рассчитанная при передвижении на один интервал при заданной продолжительности периода.
Например, если продолжительность периода равна трем, скользящие средние рассчитываются следующим образом:
_ yi + y2 + y3
yi = 3
_ y2 + y3 + y4
y2 = 3
_ y3 + y4 + y5
y3 = 3 и т.д.
При четных периодах скользящей средней необходимо центрировать данные, то есть определять среднюю из найденных средних. Например, при исчислении скользящей с продолжительностью периода два, центрированные средние рассчитывают следующим образом: