Автор работы: Пользователь скрыл имя, 01 Ноября 2011 в 16:00, курсовая работа
Динамичное развитие финансового рынка, появление новых инструментов и институтов способствуют возникновению явных и скрытых угроз стабильности. Предупреждение кризисов непосредственно связано с выявлением рисков и управлением ими. Примером по внедрению в международную практику методов оценки рисков является Базельское соглашение о норме собственного капитала, в котором достаточность капитала определяется при помощи коэффициентов, учитывающих кредитный, рыночный и операционный риски.
Введение………………………………………………………………….3
1. Обзор моделей оценки кредитного риска…………………………...6
1.1 Подходы к оценке кредитного риска…………………………...6
1.2 Понятие качества и прозрачности методик…………………….7
1.3 Характеристики физического лица. Структура данных………10
2. Статистические и экономические методы оценки риска…………..11
2.1 Скоринговые методики………………………………………….11
2.2 Кластерный анализ………………………………………………12
2.3 Дискриминантный анализ……………………………………….15
2.4 Дерево классификаций…………………………………………..18
2.5 Нейронные сети…………………………………………………..19
2.6 Технология Data mining………………………………………….20
2.7 Линейная вероятностная регрессионная модель……………….20
2.8 Логистическая регрессия………………………………………...24
3. Признаки устойчивости банка……………………………………….27
Заключение………………………………………………………………33
Список литературы……………………………………………………...36
Среди преимуществ скоринговых систем западные банкиры указывают в первую очередь снижение уровня невозврата кредита. Далее отмечаются быстрота и беспристрастность в принятии решений, возможность эффективного управления кредитным портфелем, определение оптимального соотношения между доходностью кредитных операций и уровнем риска.
2.2 Кластерный анализ
Методы кластерного анализа позволяют разбить изучаемую совокупность объектов на группы однородных в некотором смысле объектов, называемых кластерами или классами. Иерархические и параллельные кластер-процедуры практически реализуемы лишь в задачах классификации не более нескольких десятков наблюдений. К решению задач с большим числом наблюдений (как в наших целях) применяют последовательные кластер-процедуры - это итерационные алгоритмы, на каждом шаге которых используется одно наблюдение (или небольшая часть исходных наблюдений) и результаты разбиения на предыдущем шаге. Идею этих процедур реализована в «SPSS» методе средних («K-Means Clustering») с заранее заданным числом классов.
Алгоритм заключается в следующем: выбирается заданное число k- точек и на первом шаге эти точки рассматриваются как "центры" кластеров. Каждому кластеру соответствует один центр. Объекты распределяются по кластерам по такому принципу: каждый объект относится к кластеру с ближайшим к этому объекту центром. Таким образом, все объекты распределились по k кластерам. Затем заново вычисляются центры этих кластеров, которыми после этого момента считаются покоординатные средние кластеров. После этого опять перераспределяются объекты. Вычисление центров и перераспределение объектов происходит до тех пор, пока не стабилизируются центры.
Если данные понимать как точки в признаковом пространстве, то задача кластерного анализа формулируется как выделение "сгущений точек", разбиение совокупности на однородные подмножества объектов.
При проведении кластерного анализа обычно определяют расстояние на множестве объектов; алгоритмы кластерного анализа формулируют в терминах этих расстояний. Мер близости и расстояний между объектами существует великое множество. Их выбирают в зависимости от цели исследования. В частности, евклидово расстояние лучше использовать для количественных переменных, расстояние хи-квадрат - для исследования частотных таблиц, имеется множество мер для бинарных переменных.
Меры близости отличаются от расстояний тем, что они тем больше, чем более похожи объекты.
Пусть имеются два объекта X=(X1,…,Xm) и Y=(Y1,…,Ym). (табл.4. ) Используя эту запись для объектов, определить основные виды расстояний, используемых процедуре:
.
Кластерный анализ является описательной процедурой, он не позволяет сделать никаких статистических выводов, но дает возможность провести своеобразную разведку - изучить "структуру совокупности".
Проведем кластеризацию по всем 20 признакам и всем наблюдениям. В результате работы программы выводится таблица 5. (показана лишь ее часть)
Таблица 5. Cluster Membership
Case Number | Y | Cluster | Distance |
………… | … | …… | ………… |
822 | 0 | 0 | 2985,732 |
823 | 1 | 0 | 2996,715 |
824 | 0 | 0 | 3040,706 |
825 | 1 | 0 | 3054,689 |
826 | 0 | 0 | 3099,727 |
827 | 1 | 0 | 3108,674 |
828 | 1 | 1 | 3100,310 |
829 | 1 | 1 | 3053,258 |
830 | 1 | 1 | 3043,285 |
831 | 1 | 1 | 2991,286 |
………… | …… | ……… | ………… |
Столбец Y показывает, относится ли наблюдение к группе вернувших кредит “0” или навернувших “1”, столбец «Cluster» показывает принадлежность к той или иной группе наблюдения на основе кластеризации.
Таблица
6 указывает число наблюдений в том или
ином кластере.
Таблица 6. Number of Cases in each Cluster
Cluster | 1 | 822,000 | |||
0 | 178,000 | ||||
Valid | 1000,000 | ||||
Missing | ,000 |
Проанализируем качество классификации.
Таблица 7. Expectation-Predictable Table
Y=0 | Y=1 | всего | |
всего по выборке | 300 | 700 | 1000 |
прогноз | 178 | 822 | 1000 |
правильно | 65 | 587 | 652 |
неправильно | 235 | 113 | 348 |
% правильно | 21,7% | 83,9% | 65,2% |
% неправильно | 78,3% | 16,1% | 34,8% |
Из таблицы можно видеть, что видеть, что метод позволяет хорошо предугадывать плохие займы на уровне 83,9%, но плохо предугадывает хорошие займы – 21,7%. Обычно к методикам выдвигается требование распознавать лучше плохие займы, т.к. потеря невозврата кредита больше потери неполучения процентов по кредиту.
Кластерный анализ решает задачу классификации объектов при практически отсутствующей априорной информации о наблюдениях внутри классов; в дискриминантном анализе предполагается наличие такой информации. С помощью дискриминантного анализа на основании некоторых признаков (независимых переменных) индивидуум может быть причислен к одной из двух (или к одной из нескольких) заданных заранее групп. Ядром дискриминантного анализа является построение так называемой дискриминантной функции:
D=b1*x1+b2*x2+…+bn*xn+a
где х1 и х2 — значения переменных, соответствующих рассматриваемым случаям, константы x1 - xn и а — коэффициенты, которые и предстоит оценить с помощью дискриминантного анализа. Целью является определение таких коэффициентов, чтобы по значению дискриминантной функции можно было с максимальной четкостью провести разделение по группам.
Дискриминантный анализ является разделом многомерного статистического анализа, который позволяет изучать различия между двумя и более группами объектов по нескольким переменным одновременно. Цели ДА – интерпретация межгрупповых различий - дискриминация и методы классификации наблюдений по группам.
При интерпретации мы отвечаем на вопросы: возможно ли, используя данный набор переменных, отличить одну группу от другой, насколько хорошо эти переменные помогают провести дискриминацию, и какие из них наиболее информативны.
Методы
классификации связаны с
Реализуем метод дискриминантного анализа в SPSS. Существует 2 алгоритма классификации:
1. Одновременный учет всех независимых переменных. Результаты представлены в таблице 8
Таблица 8. Classification Results(a)
Y | Predicted Group Membership | Total | |||||||||
0 | 1 | ||||||||||
Original | Count | 0 | 218 | 82 | 300 | ||||||
1 | 188 | 512 | 700 | ||||||||
% | 0 | 72,7 | 27,3 | 100,0 | |||||||
1 | 26,9 | 73,1 | 100,0 |
a 73,0% of original grouped cases correctly classified.
В таблице 9 приведены коэффициенты дискриминантной функции
Таблица 9. Canonical Discriminant Function Coefficients
Function | |||
1 | |||
Z1 | ,503 | ||
Z2 | -,127 | ||
Z3 | ,338 | ||
Z4 | ,024 | ||
Z5 | -,150 | ||
Z6 | ,174 | ||
Z7 | ,134 | ||
Z8 | -,242 | ||
Z9 | ,225 | ||
Z10 | ,314 | ||
Z11 | -,006 | ||
Z12 | -,172 | ||
Z13 | ,035 | ||
Z14 | ,242 | ||
Z15 | ,272 | ||
Z16 | -,210 | ||
Z17 | ,023 | ||
Z18 | -,135 | ||
Z19 | ,271 | ||
Z20 | ,611 | ||
(Constant) | -3,977 |
Лямбда Уилкса показывает на значимое различие групп (p < 0,001).
Таблица 10. Wilks' Lambda
Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
1 | ,760 | 271,399 | 20 | ,000 |