Оценка пожарной опасности процесса производства полиэтилена методом низкого давления

Автор работы: Пользователь скрыл имя, 06 Декабря 2010 в 17:53, курсовая работа

Описание

Пожар по своей химической сущности представляет процесс горения. При горении происходит окисление вещества, чаще всего кислородом воздуха. Чтобы пожар возник и стал распространяться, необходимы определенные условия: наличие горючего вещества и его взаимоконтакт с воздухом (в некоторых случаях окислительно-восстановительные процессы протекают и без кислорода воздуха), а также их взаимоконтакт с источником тепла, способного нагреть горючее вещество до температуры самовоспламенения.

Содержание

Введение
1. Краткое описание технологического процесса
2. Анализ пожаровзрывоопасных свойств веществ, обращающихся в производстве

3. Оценка пожаровзрывоопасности среды внутри аппаратов при их нормальной работе

4 Пожаровзрывоопасность аппаратов, при эксплуатации которых возможен выход горючих веществ наружу без повреждения их конструкции


5 Анализ причин повреждения аппаратов и трубопроводов, разработка необходимых средств защиты

6 Анализ возможности появления характерных технологических источников зажигания
7. Возможные пути распространения пожара
8 Расчет категории производственного помещения по взрывопожарной и пожарной опасности

9 Пожарно-профилактические мероприятия. Вопросы экологии
10. Выводы
11. Литература

Работа состоит из  1 файл

Белоглазов ПБТП5.docx

— 360.95 Кб (Скачать документ)

      Уральский институт Государственной противопожарной  службы 
 
 

    Кафедра: Пожарная безопасность технологических процессов

    Дисциплина: Пожарная безопасность технологических процессов 
 
 
 

КУРСОВАЯ  РАБОТА 

Вариант № 5 
 
 
 
 

Тема: «Оценка пожарной опасности процесса производства полиэтилена методом низкого давления» 
 
 
 
 
 
 
 
 

              Выполнил: слушатель 5 курса

              инженерного факультета 541 группы

              мл. лейтенант внутренней службы

              Белоглазов  П.В. 
               

               Научный руководитель: 

                 Начальник кафедры, к.п.н

                 полковник внутренней службы

                 Контобойцев Е.А. 
             

Екатеринбург 

2008

 

Содержание.                                                                                                                            

  Введение  
1. Краткое описание технологического процесса  
2. Анализ пожаровзрывоопасных свойств веществ, обращающихся в производстве  
 
3. Оценка пожаровзрывоопасности  среды внутри аппаратов при их нормальной работе  
 
4 Пожаровзрывоопасность аппаратов, при эксплуатации которых  возможен выход горючих веществ  наружу без повреждения их конструкции  
 
 
5 Анализ причин повреждения аппаратов и трубопроводов, разработка необходимых средств защиты  
 
6 Анализ возможности  появления характерных технологических  источников зажигания  
7. Возможные пути распространения пожара  
8 Расчет категории  производственного помещения по взрывопожарной и пожарной опасности  
 
9 Пожарно-профилактические мероприятия. Вопросы экологии  
10. Выводы  
11. Литература  
 
 
 
 
 
 
 
 
 

                                               

    Введение.

    Правительство Российской Федерации  уделяет большое внимание развитию химической промышленности, особенно производству пластических масс и химических волокон. В настоящее время почти в каждой отрасли промышленности используют пластические массы и химические волокна.

    Распространение синтетических материалов в промышленности и в быту обусловливается их ценными свойствами: высокой механической прочностью, эластичностью, сопротивляемостью истиранию, большой химической стойкостью против кислот, щелочей и других химических соединений, неэлектропроводностью, прозрачностью, легкой окрашиваемостью, простотой изготовления изделий и их обработки.

    Однако  почти все синтетические смолы  и волокна являются горючими материалами, не обладающими высокой термической  стойкостью. При воздействии тепла многие пластмассы и синтетические волокна плавятся и разлагаются, выделяя огнеопасные и токсичные пары и газы.

    Процессы  производства пластических масс и химических волокон многостадийны, сложны и почти все пожаро- и взрывоопасны. Это объясняется тем, что сырьем и вспомогательными веществами при производстве пластмасс и волокон являются огнеопасные газы — этилен, ацетилен, пропилен, формальдегид и др.; жидкости—сероуглерод, ацетон, бензол, бензин, циклогексан, метиловый спирт и др. и твердые вещества — целлюлоза, капролактам, диметилтерефталат, нитрил акриловой кислоты, соль АГ и др. Для химических реакций используют катализаторы и инициаторы, представляющие собой взрывоопасные, воспламеняющиеся на воздухе вещества (металлоорганические катализаторы) или сильные окислители, способные разлагаться со взрывом и вызывать воспламенение других веществ (порофоры, перекиси).

    В процессе переработки сырье претерпевает многообразные превращения и видоизменения, образуя промежуточные соединения, представляющие собой в большинстве случаев также взрывоопасные газы и легковоспламеняющиеся жидкости.

    Высокая температура процесса вызывает необходимость  использования специальных теплоносителей, которые являются также горючими жидкостями. Высокотемпературные органические теплоносители (ВОТ), находясь в рубашках и змеевиках аппаратов, увеличивают общее количество горючих веществ в цехе, а часто и сами являются причиной пожаров и взрывов.

    Наличие в цехах значительного количества горючих веществ, разветвленной сети трубопроводов с жидкостями и газами, технологических проемов в строительных конструкциях, сложных систем пневматической транспортировки порошковой продукции и вентиляционных устройств создает благоприятные условия для развития начавшегося пожара.

    Пожар по своей химической сущности представляет процесс горения. При горении происходит окисление вещества, чаще всего кислородом воздуха. Чтобы пожар возник и стал распространяться, необходимы определенные условия: наличие горючего вещества и его взаимоконтакт с воздухом (в некоторых случаях окислительно-восстановительные процессы протекают и без кислорода воздуха), а также их взаимоконтакт с источником тепла, способного нагреть горючее вещество до температуры самовоспламенения. Начавшийся пожар может развиваться и причинять значительный ущерб в том случае, если имеются пути для его распространения (скопление твердых горючих веществ, разлив жидкостей, сгораемые строительные конструкции, незащищенные проемы в противопожарных стенах и перекрытиях, отсутствие преград на производственных коммуникациях, воздуховодах и т. д.). Эти закономерности возникновения и развития пожара должны быть положены в основу предупреждения и тушения пожаров.

    Таким образом, оценивая пожарную опасность  технологического процесса производства пластмасс и химических волокон, в каждом отдельном случае устанавливают, при каких условиях в аппаратах, производственных помещениях или на открытых площадках может образоваться горючая среда, по каким причинам появляются источники воспламенения и каковы пути вероятного распространения пожара. На основе этого определяют категорию пожарной опасности и разрабатывают комплекс защитных мероприятий.

    Пути  и методы предупреждения пожаров  развиваются и совершенствуются с ростом и совершенствованием самого производства. Совместная творческая работа рационализаторов и изобретателей, проектировщиков и специалистов пожарного дела приводит к появлению новых технических и организационных решений. Часть из них не нашла отражение в данной курсовом проекте.

 

  

  1. Краткое описание технологического процесса
 

Производство  полиэтилена методом  низкого давления

  Технологическая схема производства полиэтилена низкого давления состоит из четырех основных стадий: синтеза металлоорганического катализатора и приготовления рабочего раствора катализатора; полимеризации этилена; отмывки полиэтилена от катализатора; сушки полиэтилена.

         Синтез металлоорганического катализатора

       В качестве основной части катализатора используется триэтилалюминий — А1(С2Н5)3 или диэтилалюминийхлорид — А1(С2Н5)2С1. Другой составной частью является четыреххлористый титан — TiCl4. Готовый катализатор представляет собой раствор указанных веществ в бензине или смеси бензина с циклогексаном.

       Применение  триэтилалюминия обеспечивает получение  жесткого полимера с большим молекулярным весом. При использовании диэтилалюминийхлорида получается более эластичный полимер с меньшим молекулярным весом. Такой полимер легко подвергается переработке и успешно применяется при производстве кабелей и в других отраслях промышленности. Поэтому для полимеризации этилена иногда применяют диэтилалюминийхлорид. Оба катализатора получаются на одном и том же оборудовании без изменения технологической схемы в две стадии. На первой стадии получают промежуточный продукт — сесквигалоид—при взаимодействии алюминия с хлористым этилом (или бромистым этилом), на второй — триэтилалюминий (диэтилалюминийхлорид), действием на сесквигалоид металлическим натрием (реакция симметризации). 
 

       При уменьшении количества металлического натрия, расходуемого на реакцию   взаимодействия   с  сесквигалоидом,   а  также  уменьшении  скорости его   подачи   в   зону  реакции    в   качестве   конечного   продукта   будет   получаться   диэтилалюминийхлорид   по   уравнению

       2А122Н5) Х3 + 3Na ЗА1 (С2Н6)2 X + 3NaX + А1.

       На  рис. 4 показана принципиальная технологическая схема синтеза алюминийорганического катализатора. В реактор сесквигалоида 1 заливается бензин из мерника 2 (50% полезного объема реактора), затем из бункера 3 подается порошкообразный алюминий. Загружают реактор при работающей мешалке. Смесь подогревается до 40—50°С веретенным маслом, циркулирующим в рубашке аппарата, после чего в него заливается из мерника 4 расчетное количество бромистого этила для активации алюминия. Процесс активации проводится при температуре 40—60°С и давлении 0,3 атм. Для поддержания рабочей температуры реактор охлаждается, так как активация сопровождается выделением тепла. По окончании процесса смесь нагревается до 100—120°С, затем в реактор из мерника 5 подается хлористый этил. Подачей хлористого этила регулируется давление в реакторе в пределах 3—4 атм. В этих условиях образуется сесквигалоид по приведенной выше реакции. Раствор сесквигалоида га бензине охлаждается и подается к реактор 6 для получения триэтилалюминия или диэтилалюминийхлорида. После подогрева раствора до 130—135°С в него подается расплавленный металлический натрий из мерника 7. Натрий передавливается маслом, которое закачивают из мерника 8 дозировочным насосом 9.

       При подаче натрия в количестве 6% к весу чистого сесквигалоида в качестве готового продукта получают триэтилалюминий, при подаче натрия до 28% получают диэтилалюминийхлорид.

       Реакция взаимодействия натрия с сесквигалоидом проходит при 130—140°С и давлении 3—4 атм. Реактор симметризации охлаждается, так как реакция сопровождается выделением тепла. В реакторе образуется алюминийорганический катализатор и твердый остаток, называемый шламом, содержащий NaCl, NaBr, NaAl.

       

       После завершения реакции симметризации  содержимое реактора выдерживается в течение 3 ч (процесс дозревания). Смесь охлаждается до 24°С и подается в отстойник 10 для отделения раствора от шлама. Осветленный раствор фильтруется на керамическом фильтре 11 и поступает в смеситель 12 для разбавления до 5%-ной концентрации. Шлам промывается бензином или циклогексаном и поступает из отстойника в реактор 13 на обезвреживание метиловым спиртом, подаваемым из мерника 14. Реактор охлаждается водой для поддержания температуры в пределах 50—60°С, так как обработка шлама метанолом сопровождается выделением тепла. После завершения процесса обезвреживания шлама производится отгонка избыточного мета нола путем подогрева реактора паром. Пары метанола проходят через конденсатор-холодильник 15 и жидкость через сепаратор 16 поступает в сборник 17. Сухой шлам охлаждается, выгружается при помощи шнека 18 в мешки и отвозится в отвал.

       Полимеризация этилена

       Полимеризация этилена при низком давлении, как  было сказано выше, осуществляется в среде жидких углеводородов, способных растворять триэтилалюминий или диэтилалюминийхлорид и четыреххлористый титан. В качестве растворителей катализатора используют смесь бензина и циклогексана в соотношении примерно 2,5:1 (по объему). Чтобы реакция полимеризации шла с приемлемой скоростью, т. е. была в достаточной степени управляема, а полученный полимер имел требуемый молекулярный вес, — концентрация катализатора и сокатализатора в растворителе должна быть в пределах 0,2—0,3%, давление 2,5—3 атм и температура 75—85°С.

       Для получения высокого качества полимера этилен не должен содержать примесей кислорода, сернистых соединений и других веществ. Такой этилен получают низкотемпературной ректификацией с последующим процессом селективного  гидрирования.

       Контакт этилена с раствором катализатора происходит в полимеризаторах (реакторах) периодического или непрерывного действия.  Полиэтилен  образуется  по  реакции

Информация о работе Оценка пожарной опасности процесса производства полиэтилена методом низкого давления