Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 09:09, курсовая работа
Процесс обработки детали на продольно-строгальном станке поясняет
рис. 1. Снятие стружки происходит в течение рабочего (прямого) хода, при обратном движении резец поднят, а стол перемещается на повышенной скорости. Подача резца производится периодически от индивидуального привода во время холостого хода стола в прямом направлении. Поскольку при строгании резец испытывает ударную нагрузку, то значения максимальных скоростей, строгания не превосходят 75-120 м/мин (в отличие от скоростей точения и шлифования 2000 м/мин и более)
ВВЕДЕНИЕ 3
1 ИСХОДНЫЕ ДАННЫЕ 4
2 ВЫБОР ТИПА ЭЛЕКТРОПРИВОДА 6
3 ВЫБОР И ПРОВЕРКА ЭЛЕКТРОДВИГАТЕЛЯ 7
3.1 РАСЧЕТ НАГРУЗОЧНОЙ ДИАГРАММЫ МЕХАНИЗМА 7
3.2 ПРЕДВАРИТЕЛЬНЫЙ ВЫБОР ДВИГАТЕЛЯ 9
3.3 РАСЧЕТ НАГРУЗОЧНОЙ ДИАГРАММЫ ДВИГАТЕЛЯ 11
3.4 ПРОВЕРКА ДВИГАТЕЛЯ ПО НАГРЕВУ 17
4 ВЫБОР ОСНОВНЫХ УЗЛОВ СИЛОВОЙ ЧАСТИ 18
4.1 ВЫБОР ТИРИСТОРНОГО ПРЕОБРАЗОВАТЕЛЯ 18
4.2 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА 18
4.3 ВЫБОР СГЛАЖИВАЮЩЕГО РЕАКТОРА 20
4.4 ПРИНЦИПИАЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ СХЕМА СИЛОВОЙ ЧАСТИ 21
5 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СИЛОВОЙ ЧАСТИ ЭЛЕКТРОПРИВОДА 23
5.1 РАСЧЕТ ЭКВИВАЛЕНТНЫХ ПАРАМЕТРОВ СИСТЕМЫ 23
5.2 ПЕРЕХОД К СИСТЕМЕ ОТНОСИТЕЛЬНЫХ ЕДИНИЦ 24
5.3 СТРУКТУРНАЯ СХЕМА ОБЪЕКТА УПРАВЛЕНИЯ 26
6 ВЫБОР ТИПА СИСТЕМЫ РЕГУЛИРОВАНИЯ СКОРОСТИ 27
7 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ ТОКА ЯКОРЯ
И ЦЕПИ КОМПЕНСАЦИИ ЭДС ЯКОРЯ 30
7.1 ВЫБОР КОМПЕНСИРУЕМОЙ ПОСТОЯННОЙ 30
7.2 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ ТОКА ЯКОРЯ 30
7.2.1 Расчетная структурная схема контура тока 30
7.2.2 Передаточная функция регулятора тока 31
7.2.3 Компенсация влияния ЭДС якоря двигателя 32
7.2.4 Реализация датчика ЭДС 33
7.3 КОНСТРУКТИВНЫЙ РАСЧЕТ 33
8 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ СКОРОСТИ 36
8.1 РАСЧЕТНАЯ СТРУКТУРНАЯ СХЕМА КОНТУРА РЕГУЛИРОВАНИЯ СКОРОСТИ 36
8.2 РАСЧЕТ РЕГУЛЯТОРА СКОРОСТИ 36
8.3 КОНСТРУКТИВНЫЙ РАСЧЕТ 37
9 РАСЧЕТ ЗАДАТЧИКА ИНТЕНСИВНОСТИ 39
9.1 СТРУКТУРНАЯ СХЕМА ЗАДАТЧИКА ИНТЕНСИВНОСТИ 39
9.2 РАСЧЕТ ПАРАМЕТРОВ ЗИ 40
9.3 КОНСТРУКТИВНЫЙ РАСЧЕТ 40
10 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ САР СКОРОСТИ 42
ЛИТЕРАТУРА 43
Электромеханическая постоянная времени:
φ - магнитный поток в о.е. (при однозонном регулировании скорости φ = 1).
На структурной схеме объекта управления (рис. 8) представлены следующие звенья:
ТП - тиристорный преобразователь (безынерционное звено);
ЯЦ - якорная цепь двигателя (апериодическое звено с постоянной времени Тэ);
МЧ - механическая часть привода (интегрирующее звено с постоянной времени Тj).
В объекте присутствует внутренняя
обратная связь по скорости. На объект
управления воздействуют напряжение управления
ТП (управляющее воздействие) и момент
сопротивления (возмущающее воздействие).
Звено умножения на поток связывает
переменные электрической и механической
части привода.
в настоящее время в электроприводе при создании системы автоматического управления нашел применение принцип подчиненного регулирования с последовательной коррекцией.
Системы подчиненного регулирования выполняются по определенной многоконтурной структуре (см. рис. 9).
Сущность построения таких систем заключается в следующем:
Передаточная функция регулятора i-го контура будет иметь вид:
Настройка системы производится путем последовательной оптимизации контуров регулирования. Каждый контур оптимизируется по модульному или симметричному оптимумам, в основе которых лежит обеспечение вполне определенных показателей по выполнению, колебательности и точности системы автоматического управления, т.е. получение технически оптимального переходного процесса.
СПР имеют следующие достоинства:
Основной недостаток - некоторый проигрыш по быстродействию.
На рис. 10 представлена
структурная схема
В соответствие с требованиями к электроприводу принимаем двухконтурную САР скорости с внутренним контуром регулирования тока якоря. Выбираем однократно интегрирующую САР скорости, поскольку астатизм системы по моменту сопротивления не требуется и однократно интегрирующая САР обладает динамическими свойствами по сравнению с двукратно интегрирующей. Контуры тока якоря и скорости настроены на модульный оптимум. Поэтому в системе применяется ПИ-регулятор тока и П-регулятор скорости. Ускорение и замедление привода обеспечивается путем формирования линейно изменяющегося сигнала задания на скорость задатчиком интенсивности. Функциональная схема САР скорости представлена на рис. 11.
Величина Тμ является "базовой" при расчете СПР, для которых характерно, что динамические свойства системы не зависит от параметров объекта регулирования и определяется только величиной постоянной времени Тμ фильтра, установленного на выходе регулирующей части системы управления. Таким образом , в стандартных системах регулирования величина Тμ является единственным средством воздействия на систему управления.
С одной стороны уменьшение Тμ приводит к увеличению быстродействия и снижению статической и динамической ошибок по скорости при приложении внешних возмущающих воздействий, с другой стороны величина этой постоянной времени должна быть достаточно большой, чтобы обеспечить высокую помехозащищенность системы, ограничение тока якоря на допустимом уровне и устойчивость работы САУ с учетом дискретность тиристорного преобразователя.
Следовательно фильтр с постоянной времени Тμ должен реально присутствовать в САУ электроприводом.
В реальных САУ с подчиненным регулированием параметров величина Тμ лежит в пределах 0,004-0,01 с.
Для нашей системы выберем Тμ = 0,007 с.
Контур регулирования тока якоря является внутренним контуром САУ электроприводом. Он образуется регулятором тока, фильтром с постоянной времени Тμ, тиристорным преобразователем, якорной цепью и обратной связью по току через датчик тока (kдт = 1). В объекте управления имеет место внутренняя обратная связь по ЭДС якоря двигателя. Структурная схема контура тока представлена на рис. 12.
При синтезе регулятора внутренняя обратная связь оп ЭДС не учитывается.
Передаточная функция регулятора тока, найденная по условию настройки на модульный оптимум:
Тi1 = Tэ = 0,07с;
При выборе данной передаточной функции регулятора тока замкнутый контур тока будет описываться передаточной функцией фильтра Баттерворта II порядка:
При условии неподвижного якоря двигателя
(когда ω = 0, ея = 0). В этом
случае реакция контура на единичное ступенчатое
задание тока представлена кривой 1 на
рис. 13.
Действие ЭДС якоря приводит к погрешности регулирования тока. Появляется астатизм контура по задающему воздействию. При единичном задании на ток статическая ошибка составит:
Статическая ошибка по току оказывается существенной, поэтому пренебречь влиянием обратной связи по ЭДС нельзя. Для компенсации влияния ЭДС якоря используют принцип комбинированного управления. В систему управления вводится положительная обратная связь по ЭДС. Для удобства технической реализации эта обратная связь подается на вход регулятора тока, а фильтр выносится из контура в цепь задания и обратной связи по току. Структурная схема контура тока с компенсирующей связью по ЭДС представлена на рис. 14.
Передаточная функция звена
ЭДС якоря двигателя, в отличие от тока якоря и скорости, недоступна для прямого измерения. Датчик косвенного измерения ЭДС якоря использует сигналы датчика тока якоря и датчика напряжения на якоре двигателя. Связь между током якоря, напряжением якоря и ЭДС якоря устанавливает уравнение электрического состояния равновесия в якорной цепи. В операторном виде оно имеет вид:
Выразив ЭДС, получим уравнение датчика. Структурная схема датчика тока приведена ниже. Для возможности практической реализации форсирующего звена и защиты системы от помех в сигналах датчиков в канале тока и напряжения датчика ЭДС добавлено инерционное звено с постоянной времени Тμ. Таким образом реальный датчик ЭДС будет инерционным.
Рассмотрим реализацию управляющей части контура тока якоря в аналоговой системе автоматического управления электроприводом на базе операционных усилителей.
Принципиальная схема регулятора тока и цепи компенсации ЭДС представлена на рис. 16.
Регулятор реализован на усилителе DA1, звено компенсации ЭДС - на усилителе DA2. Усилитель DA3 предназначен для суммирования сигналов в датчике ЭДС.
Для расчета элементов схемы по известным значениям параметров в относительных единицах используем базисные величины:
Iбр = 0,5 мА - базисный ток регулирования принимаем, как рекомендуется в [5].
Uбр = 10 В - базисное напряжение регулирования.
Базисное сопротивление системы регулирования:
Принимаем величины сопротивлений
Емкость фильтров в цепи задания и обратной связи по току:
Емкость в цепи обратной связи усилителя DA1:
Сопротивления в цепи обратной связи усилителя DA1:
Емкость во входной цепи усилителя DA2