Физические свойства воды

Автор работы: Пользователь скрыл имя, 05 Января 2011 в 20:51, реферат

Описание

Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников. Количество воды на поверхности Земли оценивается в 1,39*1018 т, большая часть ее содержится в морях и океанах. Количество доступных для использования пресных вод в реках, озерах, болотах и водохранилищах составляет 2*104 т. Масса ледников Антарктики, Антарктиды и высокогорных районов 2,4*1016т (общая масса распределенных по поверхности Земли снега и льда достигает примерно 2,5-3,0*1016т, что составляет всего лишь 0,0004% массы всей нашей планеты.

Содержание

Введение

1. Строение молекул воды

2. Структура воды в трех ее агрегатных состояниях

3. Разновидности воды

4. Аномальные свойства воды

5. Фазовые превращения и диаграмма состояния воды

6. Модели структуры воды и льда

7. Агрегатные виды льда

Заключение

Список литературы

Работа состоит из  1 файл

физические свойства воды.rtf

— 1.41 Мб (Скачать документ)

 

Для воды дипольный момент очень высокий: p = 6,13·10-29 Кл·м. Полярностью молекул моногидроля и объясняется образование дигидроля и тригидроля. Вместе с тем, так как собственные скорости молекул возрастают с повышением температуры, этим можно объяснить постепенный распад тригидроля в дигидроль и далее в моногидроль соответственно при таянии льда, нагревании и кипении воды.

Другая гипотеза строения воды, разрабатывавшаяся в XX веке (модели О.Я.Самойлова, Дж.Попла, Г.Н.Зацепиной и др.), основана на представлении, что лед, вода и водяной пар состоят из молекул H2O, объединенных в группы с помощью так называемых водородных связей (Дж.Бернал и Р.Фаулер, 1933г.). Эти связи возникают в результате взаимодействия атомов водорода одной молекулы с атомом кислорода соседней молекулы (с сильно электроотрицательным элементом). Такая особенность водородного обмена в молекуле воды обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом (см. рис.1.3), он остается в виде ядра, почти лишенного электронной оболочки. Поэтому атом водорода не испытывает отталкивания от электронной оболочки кислорода соседней молекулы воды, а, наоборот, притягивается ею, и может вступить с нею во взаимодействие. Согласно изложенному, можно предположить, что силы, образующие водородную связь, являются чисто электростатическими. Однако, согласно методу молекулярных орбиталей, водородная связь образуется за счет дисперсионных сил, ковалентной связи и электростатического взаимодействия.

    Таблица 1.1

    Молекулярный состав льда, воды и водяного пара, %

Молекула

Лед Вода
 

Температура, °С

  0 0 4 38 98 100
Моногидроль [H2O] 0 19 20 29 36 >99,5
Дигидроль [(H2O)2] 41 58 59 50 51 <0,5
Тригидроль [(H2O)3] 59 23 21 21 13 0
 

Таким образом, в результате взаимодействия атомов водорода одной молекулы воды с отрицательными зарядами кислорода другой молекулы образуются четыре водородные связи для каждой молекулы воды. При этом молекулы, как правило, объединяются в группы — ассоциаты: каждая молекула оказывается окруженной четырьмя другими (рис. 1.3). Такая плотная упаковка молекул характерна для воды в замерзшем состоянии (лед Ih) и приводит к открытой кристаллической структуре, принадлежащей к гексогональной симметрии. При этой структуре образуются «пустоты — каналы» между фиксированными молекулами, поэтому плотность льда меньше плотности воды.

     Повышение температуры льда до его плавления и выше приводит к разрыву водородных связей. При жидком состоянии воды достаточно даже обычных тепловых движений молекул, чтобы эти связи разрушить. 

     

Рис.2 Схема взаимодействия молекул воды

1 — кислород, 2 — водород, 3 — химическая связь, 4 — водородная связь. 

Считается, что при повышении температуры воды до 4°С упорядоченность расположения молекул по кристаллическому типу с характерной структурой для льда до некоторой степени сохраняется. Имеющиеся в этой структуре отмеченные выше пустоты заполняются освободившимися молекулами воды. Вследствие этого плотность жидкости увеличивается до максимальной при температуре 3,98°С. Дальнейший рост температуры приводит к искажению и разрыву водородных связей, а, следовательно, и разрушению групп молекул, вплоть до отдельных молекул, что характерно для пара.

 

    4. Аномальные свойства воды

    Аномальные свойства воды были открыты учеными в результате длительных и трудоемких исследований. Эти свойства столь привычны и естественны в обыденной нашей жизни, что обычный человек даже не подозревает об их существовании. А вместе с тем вода - вечная спутница жизни на Земле действительно оригинальна и неповторима.

Как хорошо известно, вода принята за образец меры – эталон для всех других веществ. Казалось бы, за эталон для физических констант следовало бы выбрать такое вещество, которое ведет себя самым нормальным, обычным образом. А получилось как раз наоборот.

    И первое, самое поразительное, свойство воды заключается в том, что вода принадлежит к единственному веществу на нашей планете, которое в обычных условиях температуры и давления может находиться в трех фазах, или трех агрегатных состояниях: в твердом (лед), жидком и газообразном (невидимый глазу пар).

     Итак, главные аномалии воды:

1.Плотность дистиллированной воды при увеличении температуры от 0 до 100°С имеет максимум (при температуре 4°С), в то время как у других жидкостей она постоянно уменьшается. В соответствии с плотностью при температуре от 0 до 4°С объем воды уменьшается, а затем, при повышении температуры, увеличивается. При замерзании вода расширяется, а не сжимается, как все другие жидкости. Плотность льда при 0°С примерно на 10% меньше плотности воды при этой температуре.

     Примечание. Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно, и водоем промерзал бы на всю глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотности вода достигает при 4°С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается не поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

     2.Температура замерзания воды с увеличением давления понижается, а не повышается, как это следовало бы ожидать.

     Примечание. Этой аномалией можно объяснить существование жидкой воды на больших глубинах в морях при температуре, значительно ниже 0°С.

3.Температура замерзания (0°С) и кипения (100°С) дистиллированной воды аномальна по сравнению с температурой гидридов, входящих в одну с кислородом группу Периодической системы Д.И.Менделеева: серы — H2S, селена — H2Se, теллура — H2Te(замерзание при - 90°С, а кипение при - 70°С). Вода при нормальном давлении кипит при температуре +1000С, а замерзает при 00С — это известно всем. Но согласно ее расположению в Периодической таблице Менделеева она должна кипеть при -800... -900С, а замерзать при -1000С. Отклонение от «нормы» объясняют необычно сильным взаимодействием между собой ее молекул (кроме воды подобными аномальными свойствами, но в меньшей мере обладают аммиак и фтористый водород). Нормальным состоянием воды, исходя из имеющихся на Земле условий, должно быть газообразное состояние.

     Исходя из теории антенн, аномальную температуру кипения и замерзания воды можно объяснить и тем, что она за счет высокой «направленности» своих антенн увеличивает прочность внутренних связей, поэтому для их разрыва требуется большая энергия.

     4.Удельная теплоемкость воды (4,18 Дж/(г×К)) в 5 — 10 раз больше удельной теплоемкости других природных веществ. Укажем для сравнения значения удельной теплоемкости некоторых веществ (Дж/(г×К)): песок 0,79; известняк 0,88; хлорид натрия 0,88; глицерин 2,43; этиловый спирт 2,85. Лишь у немногих веществ (литий, древесина) она несколько приближается к удельной теплоемкости воды.

     Примечание. Благодаря высокой теплоемкости вода является мощнейшим энергоносителем на нашей планете. Поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.

5.Удельная теплоемкость воды уменьшается при повышении температуры, тогда как у других веществ (кроме ртути) она увеличивается. При этом уменьшение удельной теплоемкости воды происходит при температуре от 0 до 37°С, а затем она увеличивается (у ртути она непрерывно уменьшается).

6.Удельная теплота плавления льда необыкновенно высокая и в среднем равна 333·103 Дж/кг. Вода и лед при 0°С различаются между собой по содержанию скрытой энергии на 333·103 Дж. С понижением температуры удельная теплота плавления не увеличивается, а уменьшается примерно на 2,1 Дж на 1°С.

Примечание. При плавлении льда объем, занимаемый водой, уменьшается, следовательно, давление понижает температуру плавления льда. Это вытекает из принципа Ле Шателье. Действительно, пусть лед и жидкая вода находятся в равновесии при 0°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при 0°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

7.Вязкость воды с ростом давления уменьшается, а не увеличивается, как следовало бы ожидать по аналогии с другими жидкостями. Водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость

8.Диэлектрическая проницаемость ε у воды чрезвычайно велика и равна 81 (у льда при t = -5°С εл = 73), тогда как у большинства других веществ она составляет 2—8 и лишь у некоторых достигает 27—35 (спирты).

Примечание. Вследствие этого вода обладает большей растворяющей и диссоциирующей способностью, чем другие жидкости.

     9.Коэффициент преломления света водой n = 1,333 для длины волны λ=580

нм и при t = 20°С, вместо требуемого теорией значения

10.Удельная теплоемкость водяного пара до температуры t = 500°C отрицательна, т. е. пар при сжатии остается прозрачным, а при разрежении превращается в туман (сгущается).

11.Удельная теплота парообразования воды при понижении температуры увеличивается, достигая при 0°С очень высокого значения (25,0·105 Дж/кг).

12.Вода обладает самым высоким поверхностным натяжением среди жидкостей (0,0727 H/м при 20°С), за исключением ртути (0,465 H/м).

     Может ли вода течь вверх? Вода может подниматься вверх на очень большую высоту по очень тоненьким трубочкам — капиллярам («туннелям»), смачивая их стенки.

     Жидкость, смачивающая стенки капилляров, например, вода в стеклянной трубке образует вогнутый мениск, а несмачивающая, например, ртуть в той же трубке - выпуклый мениск.

Смачивающие свойства воды проявляются при подъеме грунтовых вод из толщи земли, и при питании растений, и при движении по порам промокательной бумаги или по тряпочке, опущенной в сосуд с водой. Эта объясняется ее повышенным (по сравнению с другими жидкостями) поверхностным натяжением. Каждая молекула на поверхности втягивается во внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости.

     Сила поверхностного натяжения поддерживает бегающих по поверхности воды насекомых, лапки которых водой не смачиваются. Эта сила придает мыльному пузырю, падающей капле, и любому количеству жидкости в условиях невесомости форму шара. Она же поднимает воду в почве и по любым капиллярам, стенки которых, наоборот, хорошо смачиваются водой.

Гипотеза 5.10: Незамерзание воды в бутылках, помещенных внутрь пирамиды Голода, при обычных минусовых температурах является следствием вовлечения содержащихся в воде солей в мощное направленное вихревое движение, создаваемое сконцентрированными в пирамиде полями, и (или) выпадения их в осадок. Первое, как и быстрое течение реки, а второе из-за большей чистоты воды препятствует ее замерзанию. Быстрое замерзание воды после встряхивания бутылки является следствием нарушения упорядоченного вихревого движения (уменьшения вследствие этого его скорости) и (или) «загрязнения» воды выпавшими ранее солями, что перемещает точку замерзания воды в область более высоких температур, соизмеримых с температурой в пирамиде.

Информация о работе Физические свойства воды