Физические свойства воды

Автор работы: Пользователь скрыл имя, 05 Января 2011 в 20:51, реферат

Описание

Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников. Количество воды на поверхности Земли оценивается в 1,39*1018 т, большая часть ее содержится в морях и океанах. Количество доступных для использования пресных вод в реках, озерах, болотах и водохранилищах составляет 2*104 т. Масса ледников Антарктики, Антарктиды и высокогорных районов 2,4*1016т (общая масса распределенных по поверхности Земли снега и льда достигает примерно 2,5-3,0*1016т, что составляет всего лишь 0,0004% массы всей нашей планеты.

Содержание

Введение

1. Строение молекул воды

2. Структура воды в трех ее агрегатных состояниях

3. Разновидности воды

4. Аномальные свойства воды

5. Фазовые превращения и диаграмма состояния воды

6. Модели структуры воды и льда

7. Агрегатные виды льда

Заключение

Список литературы

Работа состоит из  1 файл

физические свойства воды.rtf

— 1.41 Мб (Скачать документ)

Как льется и капает вода в воду? Если посмотреть на конец очень тонкой водяной струи то можно наблюдать, что на поверхности струи возникают волнообразные упругие усиливающиеся колебания. Затем образуется тонкая перетяжка, которая разрывается. Утолщение струи, находящееся перед перетяжкой, превращается в каплю, а то, что было перетяжкой, оттягивается и становится маленькой капелькой. Под действием поверхностного натяжения капля колеблется (дышит), то вытягивается, то, снова расширясь, сплющивается. Ее колебания помогли физикам разгадать тайну атомного ядра, которое по некоторым своим свойствам аналогично капле воды.

     Наблюдения за каплей воды дают весьма интересную информацию. Например, капля воды, упавшая в спокойную воду, превращается в вихревое кольцо. Это кольцо сверху сначала напоминает замкнутый контур, в котором «бьется» стоячая волна. Затем оно расширяется, в нем возникают утолщения, которые развиваются во вторичные вихревые колечки. Процесс повторяется, число колечек растет. И капля превращается в сложную систему вихревых потоков. При этом образуются самые разные геометрические формы. Разные формы вода образует не только при своем падении в воду. Она, как известно, и «камень точит», деформируя своим потоком грунт и создавая себе русло которое, углубляясь, постепенно меняет форму дна от узкого конусообразного (вверху) до почти плоского (внизу), плавно переходя через многие другие формы.

     «Понять природу этих аномалий более чем важно, - говорит стэнфордский физик Андерс Нильсон, под руководством которого недавно завершилось еще одно интересное исследование, посвященное «странностям» воды, - ведь вода – обязательная основа нашего собственного существования: нет воды – нет жизни. Наша работа позволяет объяснить эти аномалии на молекулярном уровне, при температурах, подходящих для жизни».  

 

     5. Фазовые превращения и диаграмма состояния воды 

     Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т

На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления. 

     В жидком состоянии – вода

 Твёрдом – лёд

       Газообразном – пар

Рис.5.1 

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару. 

лед = пар (кривая ОА)

лед = жидкость (кривая ОВ)

жидкость = пар (кривая ОС)

О – точка замерзания воды 

Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О – тройной точке, в которой все три фазы находятся между собой в равновесии.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах. 

Таблица 5

Температура

 
Давление насыщенного пара
 
Температура
 
Давление насыщенного пара
   
           
  кПа мм рт. ст.   кПа мм рт. ст.
0 0,61 4,6 50 12,3 92,5
10 1,23 9,2 60 19,9 149
20 2,34 17,5 70 31,2 234
30 4,24 31,8 80 47.4 355
40 7,37 55,3 100 101,3 760
 

     Молекулярная физика воды в трех ее агрегатных состояниях 

     

     Рис.5.2 Диаграмма агрегатных состояний воды в области тройной точки А. I— лед. II— вода. III— водяной пар. 

     Вода встречается в природных условиях в трех состояниях: твердом — в виде льда и снега, жидком — в виде собственно воды, газообразном — в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или же соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. приведена диаграмма агрегатных состояний воды в зависимости от температуры tи давления P. Из рис.5.2 видно, что в области Iвода находится только в твердом виде, в области II— только в жидком, в области III— только в виде водяного пара. Вдоль кривой ACона находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB— в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD— в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).

Равновесие фаз по рис.5.2 вдоль кривых AB, АС и ADнадо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы.

Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.

Все три кривые агрегатного состояния — АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) — пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P= 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t= 0,01°C(или T= 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки — точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P= 1,013·105Па и t= 100°C, и точку с координатами P= 2,211·107Па и tкр= 374,2°C, соответствующими критической температуре — температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.

Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона—Клаузиуса: 

      (1.1) 

     где T— абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L— удельная теплота соответственно испарения, плавления, сублимации; V2– V1— разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду. Подробное решение этого уравнения относительно давления насыщенного водяного пара e0над поверхностью воды — кривая ABи льда — кривая AD, можно найти в курсе общей метеорологии.

Непосредственный опыт показывает, что природные воды суши при нормальном атмосферном давлении переохлаждаются (кривая AF) до некоторых отрицательных значений температуры не кристаллизуясь. Таким образом, вода обладает свойством переохлаждаться, т.е. принимать температуру ниже точки плавления льда. Переохлажденное состояние воды является состоянием метастабильным (неустойчивым), в котором начавшийся в какой-либо точке переход жидкой фазы в твердую продолжается непрерывно, пока не будет ликвидировано переохлаждение или пока не превратится в твердое тело вся жидкость. Способность воды принимать температуру ниже точки плавления льда была обнаружена впервые Фаренгейтом еще в 1724 г.

     Таким образом, ледовые кристаллы могут возникать только в переохлажденной воде. Переход переохлажденной воды в твердое состояние – лед, происходит только при наличии в ней центров (ядер) кристаллизации, в качестве которых могут выступать взвешенные частицы наносов, находящиеся в воде, кристаллики льда или снега, поступающие в воду из атмосферы, кристаллики льда, образующиеся в переохлажденной воде в результате ее турбулентного поступательного движения, частицы других веществ, присутствующих в водной толще. 

     

     Рис.5.3 Фазовая диаграмма воды.

     Ih, II — IX — формы льда; 1 — 8 — тройные точки. 

     Переохлаждение воды – термодинамическое состояние, при котором температура воды оказывается ниже температуры ее кристаллизации. Возникает это состояние в результате понижения температуры воды или же повышения температуры ее кристаллизации. Температура воды может быть понижена отводом тепла, что наиболее часто встречается в природе, или смешением ее с соленой, например морской, водой. Температура кристаллизации может быть повышена путем понижения давления.

Таким образом, диаграмму агрегатных состояний воды — сплошная линия ADна рис.5.3— следует рассматривать как относящуюся к очень малым тепловым нагрузкам, когда влияние времени на преобразование фазы мало. При больших тепловых нагрузках процесс фазовых преобразований будет происходить согласно штриховой кривой AF.

Температура плавления льда (кривая AC) очень слабо зависит от давления. Практически кривая ACпараллельна горизонтальной оси: при изменении давления от 610,6 до 1,013·105Па температура плавления уменьшается всего лишь от 0,01 до 0°С. Однако эта температура понижается с увеличением давления только до определенного значения, затем она повышается и при очень высоком давлении достигает значения порядка 450°С (рис.5.3) Как следует из рис., при высоком давлении лед может находиться и при положительной температуре. Насчитывают до десяти различных форм льда. Форма льда Ih, для которой характерно понижение температуры плавления с увеличением давления, соответствует обычному льду, образующемуся вследствие замерзания воды при нормальных условиях. Структура и физические свойства всех форм льда существенно отличаются от льда Ih.

Твердое тело (лед), как и жидкость, испаряется в широком диапазоне значений температуры и непосредственно переходит в газообразное состояние (возгонка), минуя жидкую фазу, — кривая AD. Обратный процесс, т. е. переход газообразной формы непосредственно в твердую (сублимация), осуществляется, также минуя жидкую фазу. Возгонка и сублимация льда и снега играют большую роль в природе.

     Современная модель воды

Особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Одна из первых моделей воды – модель Фрэка и Уэна [Frank & Wen, 1957]. В соответствии с ней водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость. Считается, что благодаря таким свойствам вода служит одним из самых универсальных растворителей.

Однако модель “мерцающих кластеров” не может объяснить множество уже давно известных фактов, и тех, что стали стремительно нарастать в последнее время.

Информация о работе Физические свойства воды