Геометрическая и волновая оптика

Автор работы: Пользователь скрыл имя, 18 Декабря 2012 в 02:43, реферат

Описание

Оптика — это раздел физики, в котором изучают свойства света, его физическую природу и взаимодействие с веществом. К видимому свету отно-сят электромагнитные волны с частотой от 1,5∙1011 до 3∙1016 Гц. Видимый свет располагается между инфракрасным и ультрафиолетовым участками спектра электромагнитных излучений. Эту область спектра обычно называют оптической областью.

Содержание

Введение 3
1Волновая оптика 4
1.1Интерференция 5
1.2Дифракция 5
2Геометрическая оптика 7
3История открытий в оптике 16
Заключение 25
Список использованной литературы 27

Работа состоит из  1 файл

Физика геометрическая и волновая оптика.doc

— 158.50 Кб (Скачать документ)

 

= n,

 

где n - постоянная величина для двух данных сред, называемая относительным показателем преломления второй среды относительно первой. Показатель преломления n среды относительно вакуума называется абсолютным показателем преломления этой среды. Для двух сред с абсолютными показателями преломления n1 и n2 относительный показатель преломления n равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

 

n = .

 

Из двух сред та среда, которая обладает меньшим  значением абсолютного показателя преломления, называется оптически менее плотной средой. Если свет переходит из оптически менее плотной среды в оптически более плотную, то угол преломления γ меньше угла падения α.

При переходе из оптически более плотной среды  в оптически менее плотную  среду угол преломления γ оказывается больше угла падения α. Наблюдая преломление света, можно увидеть, что помимо преломления происходит и отражение света от границы раздела двух сред. При увеличении угла падения интенсивность отраженного луча увеличивается. При переходе света из оптически более плотной среды в оптически менее плотную (например, из стекла в воздух) при постепенном увеличении угла падения может быть достигнуто такое его значения αо, при котором угол преломления должен стать равным γ0 = 90°:

a0 = .

 

При достижении такого значения угла падения интенсивность  преломленного луча становится равной нулю: свет, падающий на границу раздела двух сред, полностью отражается от нее.

Угол падения  α0, при котором наступает полное отражение света, называется предельным углом полного отражения. При всех углах падения, больших и равных αо, происходит полное отражение света.

При отражении  и при преломлении свет может  проходить один и тот же путь в двух этих противоположных друг другу направлениях. Это свойство света называется обратимостью световых лучей. Основным принципом геометрической оптики, из которого можно вывести все ее законы, является принцип Ферма.

Принцип Ферма. Свет распространяется из одной точки среды в другую по пути, для прохождения которого затрачивается наименьшее время.

Для практического  применения большое значение имеет  преломление света на сферической  границе раздела сред. Прозрачное тело, ограниченное двумя сферическими поверхностями, называется линзой. Линзы обычно изготавливаются из стекла, хотя могут быть и кварцевыми, и слюдяными и т.д.

Тонкой называется такая линза, толщина которой  значительно меньше радиусов ограничивающих ее сферических поверхностей. Линза, которая в середине толще, чем у краев, называется выпуклой линзой. Линза, которая у краев толще, чем в середине, называется вогнутой линзой. Прямая, проходящая через центры сферических поверхностей линзы, называется главной оптической осью линзы. Точка пересечения главной оптической оси с тонкой линзой называется оптическим центром линзы. Прямые, проходящие через оптический центр линзы и не совпадающие с ее главной оптической осью, называют побочными оптическими осями.

Одним из свойств  линзы является то, что луч света, идущий вдоль главной оптической оси, проходит через линзу без изменения направления распространения. В воздухе или в вакууме все лучи, параллельные главной оптической оси выпуклой линзы, после прохождения линзы отклоняются к оси и проходят через одну точку F на главной оптической оси. Поэтому выпуклые линзы еще называют собирающими линзами. Точка F называется главным фокусом линзы. Плоскость, проходящая через главный фокус линзы перпендикулярно главной оптической оси, называется фокальной плоскостью.

У линзы два  главных фокуса в однородной среде  расположены на одинаковых расстояниях от ее оптического центра. Расстояние от оптического центра линзы до главного фокуса называется фокусным расстоянием F линзы. Все лучи, проходящие через один из ее главных фокусов, выходят из линзы параллельно главной оптической оси.

В вогнутой линзе  все лучи (в воздухе или в  вакууме), параллельные главной оптической оси, отклоняются от оптической оси, поэтому вогнутые линзы называются рассеивающими линзами. Продолжения лучей в противоположную сторону сходятся в одной точке F на главной оптической оси перед линзой. Эта точка называется главным фокусом рассеивающей линзы. Главный фокус рассеивающей линзы мнимый, так как лучи света в нем не собираются.

Расстояние f от собирающей линзы до изображения связано с расстоянием d от предмета до линзы и фокусным расстоянием Fлинзы:

 

= .

 

Это уравнение  называется формулой линзы и применяется  для нахождения расстояния до изображения при любом расположении предмета относительно линзы. Например, если значение расстояния f получается при расчете отрицательным, то это значит, что изображение предмета мнимое и находится по ту же сторону от линзы, что и предмет.

Величина, обратная фокусному расстоянию F, называется оптической силой линзы D:

 

D = .

 

Оптическая сила выражается в диоптриях (дптр). Линза  с фокусным расстоянием 1 м обладает оптической силой в 1 дптр. Оптическая сила собирающей линзы положительна, оптическая сила рассеивающей линзы отрицательна.

В зависимости  от положения предмета относительно линзы линейные размеры изображения могут изменяться. Отношение линейных размеров Н изображения к линейным размерам h предмета называется линейным увеличением Г:

Г = .

Также в практике очень часто  применяется такая оптическая система, как призма. Призма представляет собой  прозрачное тело, ограниченное с двух сторон плоскими поверхностями, образующими  между собой угол φ, называемый преломляющим углом призмы. В призме световой луч дважды испытывает преломление на преломляющих гранях и изменяет свое направление. Угол δ отклонения луча призмой определяется формулой:

 

δ = α + β - φ,

 

где α - угол падения на первую грань, β - угол преломления на второй грани, φ - преломляющий угол призмы.

В реальных условиях идеальных систем не может быть. Точно так же не бывает и идеальных оптических систем - в любой системе существуют свои погрешности. Одной из задач геометрической оптики и является нахождение способов устранения либо компенсации подобных погрешностей.

Погрешности оптических систем называются аберрациями. Они возникают в результате использования широких световых пучков, применяемых для получения большей освещенности предметов, а также при получении изображений предметов, значительно удаленных от главной оптической оси оптического прибора (например, при фотографировании). При отсутствии аберрации каждой точке изображения однозначно соответствует точка предмета. Это может быть достигнуто в том случае, когда изображение образуется узкими световыми пучками, падающими на оптическую систему под малыми углами к ее главной оптической оси. В реальных оптических системах эти условия выполняются очень редко. Например, сферические линзы только приближенно удовлетворяют этим требованиям. В результате изображение получается недостаточно резким, мелкие детали становятся неразличимыми. Для уменьшения аберрации применяют системы линз.

Существует два основных вида аберрации - сферическая и хроматическая. Сферическая аберрация возникает в результате того, что периферия линзы преломляет лучи света сильнее, чем центральная ее часть. К примеру, линза большого диаметра дает изображение точечного источника не в виде точки, а в виде расплывчатого светлого пятна. Это явление обусловлено использованием широких пучков световых лучей. Получаемые с их помощью изображения являются нерезкими, расплывчатыми. Для повышения резкости изображения оптическую систему снабжают узким отверстием (диафрагмой), через которое пропускают пучок света. Сферическую аберрацию также компенсируют путем комбинации собирающей и рассеивающей линз, подобранных соответствующим образом.

Хроматическая аберрация связана  с зависимостью показателя преломления оптических стекол от длины волны падающего на них света. Линзы из таких стекол преломляют синий свет сильнее, чем красный. В результате края изображения, полученного с помощью белого света, приобретают цветную кайму. Для ослабления хроматической аберрации применяют систему из выпуклой и вогнутой линз из особых материалов (так называемая ахроматическая пара линз). Полная компенсация хроматической аберрации возможна лишь для двух значений длин волн.

Кроме того, существуют и другие виды аберрации, к которым относят  дисторсию, астигматизм и кому. Дисторсия представляет собой погрешность оптической системы, в результате которой изображение прямоугольной сетки приобретает подушкообразную или бочкообразную форму. Прямые линии искривляются наружу или внутрь, особенно у края изображения. Астигматизм возникает тогда, когда световые пучки (даже узкие) составляют значительный угол с главной оптической осью системы. Кома представляет собой погрешность оптической системы, возникающую при прохождении через нее широких пучков света от точки предмета, находящейся на побочной оптической оси. Изображение этой точки имеет вид вытянутого и неравномерно освещенного пятна в форме кометы. Для коррекции этих видов аберрации используются сложные оптические системы, элементы которых подобраны так, что они взаимно компенсируют возникающие погрешности.

  1. История открытий в оптике

Первые представления о том, что такое свет, относятся к  древности. Подавляющее большинство древних мыслителей рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Однако позже, к началу XVII века, такое представление о природе света теряет свое значение.

Наслаждаясь видом безоблачного неба, мы вряд ли склонны рассуждать о том, что небесная синева - это одно из проявлений рассеяния света. Оказывается, синие лучи, падающие на Землю от Солнца, рассеиваются молекулами воздуха примерно в 6 раз сильнее красных, поэтому небо выглядит голубым, а солнце тем краснее, чем оно ближе к горизонту. Подобным образом объяснил голубой цвет неба в 1871 году знаменитый английский математик и физик Джон Уильям Страт (по отцу - лорд Рэлей). С тех пор рассеяние света на отдельных атомах или молекулах и вообще на маленьких частицах - с размерами, намного меньшими длины световой волны, называют рэлеевским рассеянием.

Другая точка зрения заключалась в том, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций. Позже, в XVII веке, эта точка зрения оформилась в корпускулярную теорию света, согласно которой свет является потоком неких частиц, испускаемых светящимся телом.

Третья точка зрения на природу  света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве действие или движение. В дальнейшем его взгляды на природу света положили начало волновой теории света. Необходимо отметить, что огромную роль в развитии оптики сыграло определение скорости света. Впервые скорость света была определена датским астрономом Олафом Ремером (1644—1710) в 70-х годах XVII века. Проведя наблюдения над затмением спутников Юпитера и измерив время их затмения, он смог из полученных данных подсчитать скорость распространения света. По его подсчетам, скорость света получилась равной 300870 км/с.

В XVII веке происходит окончательное формирование двух противоположных теорий света: корпускулярной и волновой.

С точки зрения корпускулярной теории хорошо объяснялось прямолинейное распространение света и закон отражения света. Кроме того, закон преломления также не противоречил этой теории. Не было противоречий и с общими представлениями о строении вещества. Но, несмотря на преобладание взглядов о корпускулярной природе света, начинают развиваться и представления о его волновой природе.

Родоначальником волновой теории света является Декарт. Согласно его взглядам, свет - это нечто вроде давления, передающегося через тонкую среду от светящегося тела во все стороны. Если тело нагрето и светится, то это значит, что его частицы находятся в движении и оказывают давление на частицы той среды, которая заполняет все пространство (эфир). Давление распространяется во все стороны и, доходя до глаза, вызывает в нем ощущение света. Однако необходимо отметить то, что взгляды Декарта носили чисто умозрительный характер.

Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским ученым Франческо Гримальди (1618—1663), который заметил, что если на пути узкого пучка световых лучей поставить предмет, то на экране, поставленном сзади, не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое им явление ученый назвал дифракцией. Гримальди объяснял это явление тем, что свет — это флюид (тонкая неощутимая жидкость) и при встрече с препятствием возникают волны этого флюида.

Дифракцией света называется явление огибания световыми волнами малых препятствий, встречающихся на пути их распространения. Например, при прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца. Чем меньше размеры экрана или отверстия, тем сильнее дифракция света.

Вторым важным открытием, относящимся  к физической оптике, было открытие интерференции света. Важная роль в исследовании интерференции принадлежит английскому физику Роберту Гуку (1635-1703). Гук считал, что свет - это колебательные движения, распространяющиеся в эфире. Он даже высказывал предположение, что эти колебания являются поперечными. При изучении цвета мыльных пленок и тонких пластинок из слюды он обнаружил, что эти цвета зависят от толщины мыльной пленки или слюдяной пластинки. Явление интерференции света в тонких пленках Гук объяснял тем, что от верхней и нижней поверхности тонкой (например, мыльной) пленки происходит отражение световых волн, которые, попадая в глаз, производят ощущение различных цветов.

Дифракция света используется в  так называемой дифракционной решетке, представляющей собой прозрачную пластинку с нанесенной на нее системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях d друг от друга.

При падении на решетку монохроматической  волны с плоским волновым фронтом в результате дифракции из каждой щели свет будет распространяться не только в первоначальном направления, но и по всем другим направлениям.

Информация о работе Геометрическая и волновая оптика