Интерференция и дифракция света и их техническое применение

Автор работы: Пользователь скрыл имя, 03 Декабря 2011 в 21:12, контрольная работа

Описание

Учение о свете является одним из основных в современной физике. Основывается оно на волновых и квантовых представлениях о происхождении света. Законы оптики находят самое широкое применение в технике. В качестве примера можно привести измерения размеров тел, спектральный и люминесцентный анализы, исследования упругих свойств материалов и т.п. Свойства света используются в оптотехнике, связанной с получением изображений в оптических инструментах, светотехнике, занимающейся освещением и источниками света, и в фототехнике, в которой используются квантовые свойства света.
Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:
Корпускулярная теория света, берущая начало от Ньютона, рассматривает его как поток частиц — квантов света или фотонов. В соответствие с идеей Планка любое излучение происходит дискретно, причём минимальная порция энергии (энергия фотона) имеет величину , где частота ν соответствует частоте излучённого света, а h есть постоянная Планка. Использование представлений о свете, как потоке частиц, объясняет явление фотоэффекта и закономерности теории излучения.

Содержание

Введение: 3
1.Интерференция 4
1.1.Техническое применение интерференции света.Интерферометры. 10
2. Дифракция 15
2.1.Дифракционная решетка 18
2.2.Исследования И. Ньютона 19
2.3.Поляризация света и Дисперсия 21
2.4. Свойства света 24
а)Волновые 23
б)Квантовые 23
Заключение 24
Список использованной литературы 25

Работа состоит из  1 файл

курсовая по физике(2).doc

— 369.50 Кб (Скачать документ)

     При r = 0, то есть в центре (точка соприкосновения) Δ = λ / 2; поэтому в центре колец Ньютона всегда наблюдается интерференционный минимум – темное пятно. Радиусы rm последующих темных колец определяются выражением

 

     Эта формула позволяет экспериментально определить длину волны света  λ, если известен радиус кривизны R линзы.

     Проблема  когерентности волн. Теория Юнга позволила  объяснить интерференционные явления, возникающие при сложении двух монохроматических волн одной и той же частоты. Однако повседневный опыт учит, что интерференцию света в действительности наблюдать не просто. Если в комнате горят две одинаковые лампочки, то в любой точке складываются интенсивности света и никакой интерференции не наблюдается. Возникает вопрос, в каких случаях нужно складывать напряженности (с учетом фазовых соотношений), в каких – интенсивности волн, т. е. квадраты напряженностей полей? Теория интерференции монохроматических волн не может дать ответа на этот вопрос.

     Реальные  световые волны не являются строго монохроматическими. В силу фундаментальных  физических причин излучение всегда имеет статистический (или случайный) характер. Атомы светового источника  излучают независимо друг от друга  в случайные моменты времени, и излучение каждого атома длится очень короткое время (τ ≤ 10–8 с). Результирующее излучение источника в каждый момент времени состоит из вкладов огромного числа атомов. Через время порядка τ вся совокупность излучающих атомов обновляется. Поэтому суммарное излучение будет иметь другую амплитуду и, что особенно важно, другую фазу. Фаза волны, излучаемой реальным источником света, остается приблизительно постоянной только на интервалах времени порядка τ. Отдельные «обрывки» излучения длительности τ называются цугами. Цуги имеют пространственную длину, равную cτ, где c – скорость света. Колебания в разных цугах не согласованы между собой. Таким образом, реальная световая волна представляет собой последовательность волновых цугов с беспорядочно меняющейся фазой. Принято говорить, что колебания в разных цугах некогерентны. Интервал времени τ, в течение которого фаза колебаний остается приблизительно постоянной, называют временем когерентности.

     Интерференция может возникнуть только при сложении когерентных колебаний, т. е. колебаний, относящихся к одному и тому же цугу. Хотя фазы каждого из этих колебаний также подвержены случайным изменениям во времени, но эти изменения одинаковы, поэтому разность фаз когерентных колебаний остается постоянной. В этом случае наблюдается устойчивая интерференционная картина и, следовательно, выполняется принцип суперпозиции полей. При сложении некогерентных колебаний разность фаз оказывается случайной функцией времени. Интерференционные полосы испытывают беспорядочные перемещения из стороны в сторону, и за время Δt их регистрации, которая в оптических экспериментах значительно больше времени когерентности (Δt >> τ), происходит полное усреднение. Регистрирующее устройство (глаз, фотопластинка, фотоэлемент) зафиксирует в точке наблюдения усредненное значение интенсивности, равное сумме интенсивностей I+ I2 обоих колебаний. В этом случае выполняется закон сложения интенсивностей.

     Таким образом, интерференция может возникнуть только при сложении когерентных  колебаний. Волны, создающие в точке наблюдения когерентные колебания, также называются когерентными. Волны от двух независимых источников некогерентны и не могут дать интерференции. Т. Юнг интуитивно угадал, что для получения интерференции света нужно волну от источника разделить на две когерентные волны и затем наблюдать на экране результат их сложения. Так делается во всех интерференционных схемах. Однако, даже в этом случае интерференционная картина исчезает, если разность хода Δ превысит длину когерентности cτ. 

    Интерферометры

     Измерительные приборы, в которых используется интерференция волн.

Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и  тем, какая величина непосредственно  измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков, которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина, вид которой, т. е. форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

     Методы  получения когерентных пучков  в интерферометрах очень разнообразны, поэтому существует большое число  различных конструкций интерферометров. По числу интерферирующих пучков света оптические интерферометры можно разбить на многолучевые и двухлучевые.

     Примером  двухлучевого интерферометра может  служить интерферометр Майкельсона. Параллельный пучок света источника L, попадая на полупрозрачную пластинку P1, разделяется на пучки 1 и 2. После  отражения от зеркал M1 и M2 и повторного прохождения через пластинку P1 оба пучка попадают в объектив O2, в фокальной плоскости D которого они интерферируют. Оптическая разность хода ∆ = 2(AC – AB) = 2l, где l – расстояние между зеркалом M2 и мнимым изображением M1∆зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1∆ и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму концентрических колец. Если же M2 и M1∆ образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M2M1∆ и представляющие собой параллельные линии.

     Интерферометр Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины света, доказана независимость скорости света от движения Земли. Перемещая одно из зеркал интерферометра Майкельсона, получают возможность плавно изменять ∆, а зависимость интенсивности центрального пятна от ∆, в свою очередь, дает возможность анализировать спектральный состав падающего излучения с разрешением 1/∆ см-1. На этом принципе построены Фурье-спектрометры, применяющиеся для длинноволновой инфракрасной области спектра (50–1000 мкм) при решении задач физики твердого тела, органической химии и химии полимеров, диагностики плазмы.

     Сочетание интерферометра Майкельсона и призменного  монохроматора – компаратор интерференционный  Кёстерса – применяется для абсолютных и относительных измерений длин концевых мер (измерительных плиток) сравнением их с длиной волны света или между собой с точностью ∆ 0,025 мкм, а сочетание его с лазером (при стабилизации частоты ∆ 2∆10-9) позволяет с такой же абсолютной точностью измерять длины порядка 10 м. При замене плоских зеркал в интерферометре Майкельсона отражающими триэдрами его используют для измерения углов с точностью до 10-6 рад. Сочетание интерферометра Майкельсона с микроскопом (микроинтерферометр В. П. Линника) позволяет по виду интерференционной картины определять величину и форму микронеровностей металлических поверхностей.

     Существуют  двухлучевые интерферометры, предназначенные  для измерения показателей преломления  газов и жидкостей,– интерференционные рефрактометры. Один из них – интерферометр Жамена. Пучок света S после отражения от передней и задней поверхностей первой пластины P1 разделяется на два пучка S1 и S2. Пройдя через кюветы K1 и K2, пучки, отразившиеся от поверхностей пластины P2, попадают в зрительную трубу T, где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n1, а другая с n2, то по смещению интерференционной картины на число полос m по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти ∆n=n1–n2=m∆/l (l – длина кюветы).

     Разновидностями интерферометра Жамена являются интерферометр  Маха – Цендера и интерферометр  Рождественского, где используются две полупрозрачные пластинки P1 и P2 и два зеркала M1 и M2. В этих интерферометрах расстояние между пучками S1 и S2 может быть сделано очень большим, что облегчает установку в один из них различных исследуемых объектов, поэтому они широко применяются в аэрогазодинамических исследованиях.

     В интерферометре Рэлея интерферирующие пучки выделяются с помощью двух щелевых диафрагм D. Пройдя кюветы K1 и K2, эти пучки собираются в фокальной плоскости объективом O2, где образуется интерференционная картина полос равного наклона, которая рассматривается через окуляр O3. При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Если показатели преломления n1 и n2 веществ в кюветах, то из-за разности хода в кюветах верхняя картина сместится относительно нижней. Измеряя величину смещения по числу полос m, можно найти ∆n.

     Точность  измерения показателей преломления  с помощью интерференционных  рефрактометров очень высока и достигает 7-го и даже 8-го десятичного знака.

     Для измерения угловых размеров звезд  и угловых расстояний между двойными звездами применяется звездный интерферометр  Майкельсона. Свет от звезды, отразившись  от зеркал M1, M2, M3, M4, образует в фокальной  плоскости телескопа интерференционную  картину. Угловое расстояние между соседними максимумами ∆ = ∆/D. При наличии двух близких звезд, находящихся на угловом расстоянии ∆, в телескопе образуются две интерференционные картины, также смещенные на угол ∆. Изменением D добиваются наихудшей видимости картины, что будет при условии ∆ = 1/2∆ = ∆/2D, откуда можно определить ∆.

     Многолучевой  интерферометр Фабри – Перо состоит  из двух стеклянных или кварцевых  пластинок P1 и P2, не обращенные друг другу  и параллельные между собой поверхности  которых нанесены зеркальные покрытия с высоким (85–98%) коэффициентом отражения. Параллельный пучок света, падающий из объектива O1, в результате многократных отражений от зеркал образует большое число параллельных, когерентных пучков с постоянной разностью хода между соседними пучками. В результате многолучевой интерференции в фокальной плоскости L объектива O2 образуется интерференционная картина, имеющая форму концентрических колец с резкими интенсивными максимумами, положение которых зависит от длины волны. Поэтому интерферометр Фабри – Перо разлагает сложное излучение в спектр. Применяется интерферометр Фабри – Перо как интерференционный спектральный прибор высокой разрешающей силы. Специальные сканирующие интерферометры Фабри – Перо с фотоэлектрической регистрацией используются для исследования спектров в видимой, инфракрасной и сантиметровой областях длин волн. Разновидностью интерферометра Фабри – Перо являются оптические резонаторы лазеров, излучающая среда которых располагается между зеркалами интерферометра. К многолучевым интерферометрам также относятся различного рода дифракционные решетки, которые используются как интерференционные спектральные приборы.  

 

      Практическое применение интерференции света

     Применение  голографии при неразрушающем  контроле материалов. 

      Типичная оптическая схема голографической установки приведена на

     Рис.5

Лазер 1 (рис.5) испускает монохроматический пучок света, который делится на два с помощью светоделительной пластинки 2, пучок А предметная волна - через систему зеркал 3 и 7 и линз 4 и 8 направляется на объект 5, отражается от него и попадает на фотопластинку 6, где интерферирует с опорной волной Б. Все элементы установки крепятся на одной жесткой поверхности, чтобы избежать даже весьма малых перемещений в процессе съемки голограммы. Метод голографической интерферометрии заключается в последовательной записи на одной фотопластинке двух голограмм от одного объекта, однако в промежутке между записями объект подвергается какому – либо воздействию (механическому деформированию, нагреванию и т.п.). В результате этого оптическая длина пути предметных волн, отражённых до и после воздействия, оказывается различной, возникают дополнительная разность хода и, соответственно, некоторый сдвиг фаз обеих волн.

Информация о работе Интерференция и дифракция света и их техническое применение