Колебания маятника

Автор работы: Пользователь скрыл имя, 29 Мая 2013 в 19:37, лекция

Описание

Если колебания совершаются в системе за счет первоначально сообщенной энергии,
то они называются свободными. Примером таких систем являются модели
колеблющихся тел: математический маятник и пружинный.
Математический маятник – колеблющаяся материальная точка, подвешенная
на невесомой и нерастяжимой нити. К этой модели ближе всего массивное
тело (шар), размер (диаметр) которого много меньше длины нити.

Работа состоит из  1 файл

маятник.docx

— 35.07 Кб (Скачать документ)

Если колебания совершаются  в системе за счет первоначально  сообщенной энергии,

то они называются свободными. Примером таких систем являются модели

колеблющихся тел: математический маятник и пружинный.

Математический маятник – колеблющаяся материальная точка, подвешенная

на невесомой и нерастяжимой нити. К этой модели ближе всего  массивное

тело (шар), размер (диаметр) которого много меньше длины нити. Если его

отклонить от положения равновесия, увеличив при этом потенциальную  энергию

системы «шар–нить», то будут  наблюдаться колебательные движения этой

системы. Колебательное движение системы «шар–нить» будет наблюдаться  и в

том случае, если шару сообщить кинетическую энергию, т.е. заставить  его

двигаться.

 

Рассмотрев малые колебания  математического маятника (рис. 4), при

которых отклонение его от положения равновесия х можно получить

выражение для периода  его колебаний. Как мы знаем, в  любой момент времени для

этой системы выполняется  закон сохранения механической энергии:(t) << L,

Выразив высоту h через координату x по оси 0Х (рис. 4, а) и учитывая, что

при малых значениях х угол между нитью и вертикалью тоже мал, используем что

для такого угла отклонения соотношение sin a » a » tg a.

Рис. 4

Следовательно,

Из закона сохранения энергии  получим

Поэтому можно утверждать (см. Уравнение гармонических колебаний),

что малые колебания математического  маятника происходят по гармоническому

закону

x = A sin (wt + j0),

где

,

т.е. с периодом

 

Амплитуду и начальную  фазу колебаний находят из начальных  условий –

начальной скорости и начальной  координаты тела. Если, например, тело в момент

времени t находилось в начале координат и имело скорость 

0, то из уравнений = 0

x(0) = A sin j= 0

(0) = Aw cos j
0

находим

j= 0, A = 

0/w.

Точно так же, как материальная точка математического маятника, будет

двигаться материальная точка, скользящая по гладкой сфере или  цилиндру,

радиус которого совпадает с длиной нити математического маятника (рис. 4,б).

 


Информация о работе Колебания маятника