Автор работы: Пользователь скрыл имя, 08 Мая 2013 в 14:25, курсовая работа
Цель: изучить физические и химические свойства актиноидов ,их распространенность в природе, основные соединения и практическое значение
Введение……………………………………………………………...…………... 2
Глава 2. История открытия элементов…………………………………………2
Глава 3. Изотопы………………………………………………………………..5
Глава 4. Распространение в природе………………………………………….8
Глава 5. Получение……………………………………………………………..10
Глава 6. Cвойства………………………………………………………………15
§6.1.Физические свойства………………………………………………..15
§6.2.Химические свойства……………………………………………….18
Глава 7. Соединения……………………………………………………………21
§7.1.Оксиды и гидроксиды………………………………………………21
§7.2.Соли кислот………………………………………............................25
Глава 8. Применение…………………………………………………………..26
Глава 9. Токсичность…………………………………………………………..29
Заключение………………………….………………………………………….34
Список литературы……………………………………………………………..35
Для урана, как и для многих d-элементов, характерно наличие нескольких степеней окисления, в частности, уран принимает значения валентности от 3 до 6, наиболее устойчивой степенью окисления является +6. В шестивалентном состоянии уран является полным электронным аналогом элементов шестой группы, хотя значительная разница в радиусах ионов U6+ и W6+ делает сходство между ними лишь формальным (однако они имеют одинаковые составы высших оксидов и некоторых оксоанионов, например ). В соединениях уранаIV и уранаVI присутствует ряд нестехиометрических соединений, то есть оксиды переменного состава. К примеру, химическую формулу его диоксида — UO2 — правильнее записывать UO2+x, где x имеет значения от −0,4 до +0,32. Соединения уранаVI не являются сильными окислителями. Соединения уранаIV проявляют восстановительные свойства, например легко окисляются кислородом из воздуха. Соединения уранаIII являются очень сильными восстановителями. Уран склонен к образованию металлоорганических соединений. Данное свойство объясняется наличием d-орбитали.
Для нептуния возможны валентности 3, 4, 5, 6 и 7. В растворах он может находиться одновременно в нескольких из них. Это объясняется диспропорционированием пятивалентного нептуния в сильнокислых растворах из-за близости редокс-потенциалов ионных пар нептуния. Наиболее стабильными в растворах являются ионы NpV. В твёрдых соединениях нептуний устойчив и проявляет валентность 4. Ионы NpIII и NpIV, как и других актиноидов, существуют в воде в качестве гидратированных катионов вышеуказанных ионов нептуния. NpIII гидролизуется в слабощелочной среде. Металлический нептуний очень реакционноспособен. Ионы данного элемента отличаются высокой склонностью к образованию координационных соединений и гидролизу.
Для плутония, так же как и для нептуния, возможны валентности от 3 до 7. Химическое поведение плутония аналогично для урана и нептуния. В химическом отношении плутоний является весьма активным элементом. На воздухе он окисляется, образуя плёнку из PuO при 50 °C. Плутоний заметно реагирует с водородом даже при 25—50 °C. Металлический плутоний довольно активно взаимодействует с галогенами и галогеноводородами. Данный элемент обладает сильным потенциалом к образованию интерметаллических соединений. Реакции гидролиза ионов плутония разных степеней окисления довольно разнообразны. Для PuIV в зависимости от условий характерны реакции полимеризации.
Наибольшим разнообразием отличается америций, у которого достоверно установлено наличие степеней окисления от +2 до +6. Двухвалентный америций получен только в сухих соединениях и в неводных растворах (ацетонитриле). Состояния окисления +3, +5 и +6 характерны для водных растворов америция, хотя известно большое количество соответствующих им твёрдых соединений. Четырёхвалентный америций образует устойчивые твёрдые соединения (диоксид, фторид, гидроксид америция), в водном растворе он существует в виде различных комплексных соединений. Сообщалось, что в щелочном растворе америций может быть окислен до семивалентного состояния, однако эти данные оказались ошибочными. Наиболее устойчивой валентностью америция в водном растворе является +3, в твёрдых соединения +3 и +4.
Валентность +3 является доминирующей у всех последующих элементов вплоть до лоуренсия (за исключением, возможно, нобелия). Кюрий существует в четырёхвалентном состоянии в твёрдых соединениях (фторид, диоксид кюрия), а в водном растворе — только в виде неустойчивого фторидного комплексного соединения. Сообщалось об окисления кюрия в водном растворе до шестивалентного состояния, однако другие исследователи не смогли воспроизвести этот результат.
Берклий, наряду с валентностью +3, также проявляет валентность +4, более устойчивую чем у кюрия; ей отвечает ряд твёрдых соединений (фторид, диоксид берклия), а в водном растворе устойчивость иона Bk4+ близка к устойчивости иона Ce4+. У калифорния, эйнштейния и фермия единственной достоверной валентностью является +3. Доказано наличие двухвалентного состояния у менделевия и нобелия, причем у нобелия оно является более устойчивым, чем трёхвалентное. Валентности двух последних трансплутониевых элементов — лоуренсия и резерфордия — очень скудны; известно, что лоуренсий как в растворе, так и в сухих соединениях проявляет только валентность +3; а резерфордий в виде хлорида ведет себя подобно гафнию, то есть, по-видимому, четырёхвалентен.
Из-за того что торий, протактиний и уран имеют высокие стабильные степени окисления, их иногда ставят как элементы побочных подгрупп четвёртой, пятой и шестой групп. Если бы и действительно существовала такая тенденция, трансурановые элементы должны были бы находится в восьмой и седьмой группах, и у них легче, чем у урана, должна была бы проявляться высокая валентность. Но этого не наблюдается, потому что от урана до америция способность создавать соединения с валентностью +6 уменьшается. В этом можно убедиться, проставляя полученные в стандартных условиях редокс-потенциалы :
уран: −0,32 В,
нептуний: +0,34 В,
плутоний: +1,04 В,
америций: +1,34 В.
Отсюда напрашивается вывод, что восстановительная способность иона M4+ возрастает от америция до урана.
Как и лантаноиды, все металлы-актиноиды легко соединяются с кислородом, галогенами и халькогенами, углеродом, водородом и серой. Для америция установлено, что возможно получить гидрид данного вещества — AmH3. Торий, протактиний и уран также соединяются с водородом при 250 °C. Создают гидриды и другие актиноиды. Гидриды с общей формулой MH3 своими свойствами напоминают соли. Все соединения имеют чёрный цвет.
При реакции с углеродом актиноиды преимущественно создают карбиды с общей формулой MC, MC2, а уран U2C3. С серой они производят сульфиды с общей формулой M2S3 и MS2.
Глава 7.Соединения
§7.1.Оксиды и гидроксиды
Для некоторых актиноидов известно несколько оксидов: M2O3, MO2, M2O5 и MO3. Для всех металлов оксиды M2O3, MO2 и M2O5 — осно́вные, а MO3 — амфоте́рные. Более выражены основные свойства оксидов. Они легко соединяются с водой, образуя основания:
.
Данные основания плохо растворяются в воде, а по своей активности близки к гидроксидам редкоземельных металлов. Наиболее сильным из этих оснований является гидроксид актиния. Актиний сравнительно легко взаимодействует с водой, вытесняя водород. Все соединения актиния, кроме его чёрного сульфида (Ac2S3), имеют белую окраску.
Оксиды четырёхвалентных актиноидов кристаллизуются
в кубическую сингонию, структура кристалла
типа флюорита (фторид кальция)
Торий, соединяясь с кислородом, образует лишь диоксид. Его можно получить при сжигании металлического тория в кислороде при температуре в 1000 °C, или нагреванием некоторых его солей:
Диоксид тория является тугоплавким веществом (температура плавления 3220 °C), очень стоек к нагреванию. Из-за этого свойства диоксид тория иногда используют в производстве огнеупорных материалов. Добавление 0,8—1 % ThO2 к чистому вольфраму стабилизирует его структуру; поэтому волоски электроламп имеют лучшую устойчивость при вибрациях.
Диоксид тория — основный оксид, но непосредственно при реакции металла с водой он не получится. Чтобы растворить ThO2 в кислотах его сначала нагревают до температуры 500—600 °C. Более сильное нагревание (выше 600 °C) способствует получению очень стойкой к кислотам и другим реагентам структуры ThO2. Небольшая добавка фторид-ионов катализирует растворение торий и его диоксида в кислотах.
У протактиния получено два оксида: PaO2 (чёрный) и Pa2O5 (белый). Первый из них изоморфен с ThO2. Легче получить Pa2O5. Оба оксида протактиния осно́вные. Для пятивалентного протактиния можно получить Pa(OH)5 — слабое плохо растворимое основание.
При разложении некоторых солей урана можно получить оранжевый или жёлтый UO3. Данный оксид является амфотерным; он непосредственно получается при взаимодействии с водой и создает несколько гидроксидов, из которых наиболее стабильным является UO2(OH)2.
При реакции оксида урана(VI) с водородом получается диоксид урана, который схож по своим свойствам с ThO2. Этот оксид также является осно́вным. Ему соответствует тетрагидроксид урана (U(OH)4).
Плутоний, нептуний и америций образуют оксиды двух типов: M2O3 и MO2, которые обладают осно́вными свойствами. У кюрия получены белый Cm2O3 и чёрный CmO2, у калифорния — Cf2O3. Оксиды остальных актиноидов плохо изучены. Триоксид нептуния является менее стойким, чем оксид урана, поэтому он не получен в чистом виде (только Np3O8). В то же время, хорошо изучены оксиды плутония и нептуния с химической формулой MO2 и M2O3.
Оксиды новых элементов часто исследуются первыми, что связано с их большим значением, лёгкостью получения и с тем фактом, что оксиды обычно служат в качестве промежуточных соединений при получении других веществ.
Таблица: Оксиды актиноидов
Соединение |
Цвет |
Сингония и структурный тип |
Параметры ячейки, Å |
Плотность, г/см³ |
Область существования, °C | ||
a |
B |
C | |||||
Ac2O3 |
Белый |
Гексагональная, La2O3 |
4,07 |
— |
6,29 |
9,19 |
— |
PaO2 |
— |
Кубическая, CaF2 |
5,505 |
— |
— |
— |
— |
Pa2O5
|
Белый |
Кубическая, CaF2 Квадратичная Тетрагональная Гексагональная Ромбоэдрическая Орторомбическая |
5,446
10,891 5,429 3,817 5,425 6,92 |
—
— — — — 4,02 |
—
10,9925,503 13,22— 4,18 |
— |
—
700 700-1100 1000 1000-1200 1240-1400 |
ThO2 |
Бесцветный |
Кубическая |
5,59 |
— |
— |
9,87 |
— |
UO2 |
Чёрно-коричневый |
Кубическая |
5,47 |
— |
— |
10,9 |
— |
NpO2 |
Зеленовато-коричневый |
Кубическая, CaF2 |
5,424 |
— |
— |
11,1 |
— |
PuO |
Чёрный |
Кубическая, NaCl |
4,96 |
— |
— |
13,9 |
— |
PuO2 |
Оливково-зелёный |
Кубическая |
5,39 |
— |
— |
11,44 |
— |
Am2O3
|
Красновато-коричневый Рыжевато-коричневый |
Кубическая, Mn2O3
Гексагональная, La2O3 |
11,03
3,817 |
— |
—
5,971 |
10,57
11,7 |
— |
AmO2 |
Чёрный |
Кубическая, CaF2 |
5,376 |
— |
— |
— |
— |
Cm2O3
|
Белый
—
— |
Кубическая, Mn2O2 Гексагональная, LaCl3 Моноклинная, Sm2O3 |
11,01
3,80
14,28 |
—
—
3,65 |
—
6
8,9 |
11,7 |
— |
CmO2 |
Чёрный |
Кубическая, CaF2 |
5,37 |
— |
— |
— |
— |
Bk2O3 |
Светло-коричневый |
Кубическая, Mn2O3 |
10,886 |
— |
— |
— |
— |
BkO2 |
Рыжевато-коричневый |
Кубическая, CaF2 |
5,33 |
— |
— |
— |
— |
Cf2O3
|
Бесцветный Желтоватый— |
Кубическая, Mn2O3 Моноклинная, Sm2O3 Гексагональная, La2O3 |
10,79
14,12
3,72 |
— 3,59
— |
—
8,80
5,96 |
— |
— |
CfO2 |
Чёрный |
Кубическая |
5,31 |
— |
— |
— |
— |
Es2O3
|
— |
Кубическая, Mn2O3 Моноклинная Гексагональная, La2O3 |
10,07
1,41 3,7 |
—
3,59 — |
—
8,80 6 |
— |
— |
§7.2.Соли кислот
Металлы-актиноиды хорошо соединяются с галогенами, создавая соли MHa3 и MHa4 (Ha — галоген), так был получен хлорид калифорния. В 1962 году было синтезировано первое соединение берклия — BkCl3 в количестве 0,000003 мг.
Подобно галогенам редкоземельных элементов хлориды, бромиды и иодиды актиноидов растворяются в воде, а фториды — нерастворимы. У урана сравнительно легко получить бесцветный гексафторид, который способен возгоняться при температуре в 56,5 °C. Из-за легкости UF6 его применяют при разделении изотопов урана диффузным методом.
Гексафториды актиноидов по свойствам приближаются к ангидридам. В воде они гидролизуются, образуя MO2F2. Также были синтезированы пентахлорид и чёрный гексахлорид урана, но они оба являются нестабильными .
При воздействии кислот на актиний, торий, протактиний, уран, нептуний и пр. получаются соли. В случае, если на них действовать кислотами-неокислителями, как правило, можно получить соли низкой валентности металлов:
Однако в ходе данных реакций восстанавливающий водород может реагировать с самим металлом, образуя соответствующий гидрид металла. С кислотами и водой уран реагирует значительно легче, чем торий.
Соли актиноидов легко получаются при растворении соответствующих гидроксидов в кислотах. В свою очередь, нитраты, хлориды, перхлораты и сульфаты актиноидов могут растворяться в воде. Из водных растворов эти соли кристаллизуются, образуя гидраты, например:
Th(NO3)4·6H2O,
Th(SO4)2·9H2O,
Pu2(SO4)3·7H2O.
Ещё одним свойством этих соединений является способность солей актиноидов высшей валентности к легкому гидролизу. Так, бесцветные средние сульфат, хлорид, перхлорат, нитрат тория в растворе быстро переходят в осно́вные соли с химическими формулами Th(OH)2SO4, Th(OH)3NO3, Трииодид эйнштейния.
Своей растворимостью соли трехвалентных и четырёхвалентных актиноидов подобны солям лантаноидов. Как и для лантана и его аналогов, плохо растворяются в воде фосфаты, фториды, оксалаты, иодаты, карбонаты актиноидов. В этом случае почти все плохорастворимые соли осаждаются в растворе в виде кристаллогидратов, например, ThF4·3H2O, Th(CrO4)2·3H2O.
Актиноиды со степенью окисления +6, кроме катионных комплексов типа , создают анионы [MO4]2−, [M2O7]2− и некоторые более сложные соединения. Например, у урана, нептуния и плутония известны соли типа уранатов (Na2UO4) и дитиуранатов ((NH4)2U2O7).