Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита

Автор работы: Пользователь скрыл имя, 08 Апреля 2012 в 20:39, курсовая работа

Описание

Ионное состояние более выгодно, оно характеризуется более меньшей внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том , что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.

Содержание

Введение…………………………………………………………………..……….3
1 Коррозия и защита металлов…………………………………………...………5
1.1 Определение и классификация коррозийных процессов…………..……5
2. Электрохимическая коррозия………………………………………………….9
2.1 Термодинамика электрохимической коррозии металлов………….…...10
2.2 Схема процесса электрохимической коррозии металлов………...…….12
2.3 Гомогенные и гетерогенные пути электрохимической коррозии……..13
2.4 Механизм электрохимической коррозии……………………………..…15
2.5 Скорость электрохимической коррозии……………………………...….18
2.6 Анодные процессы при электрохимической коррозии металлов……...24
2.6.1 Термодинамические основы…………………………………………24
2.6.2 Классификация анодных процессов………………………………...25
2.6.3 Причины анодного растворения металлов…………………….....25
2.6.4 Анодная пассивность металлов………………………………...…27
3. Защита металлов от коррозии………………………………………………..29
3.1 Катодная и протекторная защита…………………………………...……40
Заключение…………………………………………………...…………….……46
Список использованных источников и литературы……………………...…48

Работа состоит из  1 файл

Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита. .doc

— 778.00 Кб (Скачать документ)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Содержание 

Введение…………………………………………………………………..……….3

1 Коррозия  и защита металлов…………………………………………...………5

1.1 Определение  и классификация коррозийных  процессов…………..……5

2. Электрохимическая  коррозия………………………………………………….9

2.1 Термодинамика электрохимической коррозии металлов………….…...10

2.2 Схема процесса электрохимической коррозии металлов………...…….12

2.3 Гомогенные и гетерогенные пути электрохимической коррозии……..13

2.4 Механизм  электрохимической коррозии……………………………..…15

2.5 Скорость электрохимической коррозии……………………………...….18

2.6 Анодные  процессы при электрохимической  коррозии металлов……...24

    2.6.1 Термодинамические  основы…………………………………………24

    2.6.2 Классификация  анодных процессов………………………………...25

    2.6.3 Причины анодного растворения металлов…………………….....25

    2.6.4 Анодная  пассивность металлов………………………………...…27

3. Защита  металлов от коррозии………………………………………………..29

3.1 Катодная  и протекторная защита…………………………………...……40

Заключение…………………………………………………...…………….……46

Список  использованных источников и литературы……………………...…48 
 
 
 
 
 
 
 
 
 

Введение 

      Металлы и сплавы на металлической основе - основные конструкционные материалы. К сожалению, в условиях их эксплуатации окисленное их состояние является более  устойчивым. В это состояние металлы  и сплавы переходят в результате коррозии.

      Термин  коррозия происходит от латинского "corrosio", что означает разъедать, разрушать. Этот термин характеризует как процесс  разрушения, так и результат.

      Среда в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой. В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии, является окисление металла.

      Любой коррозионный процесс является многостадийным:

    1. Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла;
    2. Взаимодействие среды с металлом;
    3. Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

      Известно  что большинство металлов ( кроме Ag,Pt,Cu,Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно руды металлов.

      Ионное  состояние более выгодно, оно  характеризуется более меньшей  внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том , что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.

      Коррозионный  процесс является самопроизвольным, следовательно G=G-G (G и G относятся к  начальному и конечному состоянию соответственно).

      Если G>G то G<0, т.е. коррозионный процесс  возможен; G>0 коррозионный процесс  невозможен; G=0 система металл-продукт находится в равновесии.

      То  есть можно сказать, что первопричиной  коррозии металла является

термодинамическая неустойчивость металлов в заданной среде. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Коррозия и защита  металлов

1.1 Определение и  классификация коррозийных  процессов 

     Коррозия - это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. При этом металлы окисляются и образуются продукты, состав которых зависит от условий коррозии.

     Коррозия  самопроизвольный процесс и соответственно происходит с уменьшением энергии  Гиббса системы. Химическая энергия коррозионного разрушения металлов выделяется в виде тепла и рассеивается в окружающем пространстве. Коррозия приводит к большим потерям в результате разрушения трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и т.п. Безвозвратные потери металлов от коррозии составляют 15% от ежегодного их выпуска. Однако во многих случаях косвенные убытки от коррозии могут значительно превышать прямые потери за счет растворения металла. Замена прокорродировавшего котла или конденсатора на большой теплоэлектростанции может нанести энергосистеме существенный ущерб. Кроме того, к убыткам от коррозии можно отнести также стоимость потерянного продукта, например, масла, газа, воды из системы с прокорродированными трубами или антифриза через прокорродировавший радиатор. Выброс природного газа и других пожаро- и взрывоопасных веществ через отверстия, образованные вследствие коррозии, может привести к пожарам и даже к мощным взрывам с огромными и материальными потерями и даже с человеческими жертвами, как, например, в случае Башкирской трагедии.

     В целом потери народного хозяйства  от коррозии исчисляются миллиардами  рублей ежегодно. Цель борьбы с коррозией - это сохранение ресурсов металлов, мировые запасы которых ограничены. Изучение коррозии и разработка методов защиты металлов от нее представляют теоретический интерес и имеют большое народнохозяйственное значение.

     По  механизму протекания коррозионного  процесса, зависящему от характера  внешней среды, с которой взаимодействует  металл, различают химическую и электрохимическую коррозию.

     Химическая  коррозия характерна для сред, не проводящих электрический ток. При химической коррозии происходит прямое гетерогенное взаимодействие металла с окислителем окружающей среды. По условиям протекания коррозионного процесса различают:

     а) газовую коррозию - в газах и парах без конденсации влаги на поверхности металла, обычно при высоких температурах. Примером газовой коррозии может служить окисление металла кислородом воздуха при высоких температурах;

     б) коррозию в не электролитах - агрессивных органических жидкостях, таких, как сернистая нефть и др.

     Электрохимическая коррозия характерна для сред, имеющих  ионную проводимость. При электрохимической коррозии процесс взаимодействия металла с окислителем включает анодное растворение металла и катодное восстановление окислителя. Электрохимическая коррозия может протекать:

     а) в электролитах - в растворах солей, кислот, щелочей, в морской воде;

     б) в атмосфере любого влажного газа;

     в) в почве.

     Особым  видом электрохимической коррозии следует считать коррозию за счет внешнего электрического тока. В качестве пример подобного вида разрушений можно привести коррозию трубопроводов с токопроводящими жидкостями, нерастворимых анодов в электрохимических ваннах, подземных металлических сооружений.

     Хотя  механизм протекания коррозионного процесса в разных условиях различен, по характеру разрушения поверхности металла коррозию можно разделить на равномерную и местную (рис 1).

     Равномерная, или общая, коррозия распределяется более или менее равномерно по всей поверхности металла, в то время как местная коррозия сосредоточена на отдельных участках и проявляется в виде точек, язв или пятен.

      Местная коррозия, как правило, более опасна, чем равномерная коррозия, так как проникает на большую глубину. Особыми видами коррозии является межкристаллическая коррозия (коррозия по границам зерен), избирательная коррозия (растворение одного из компонентов сплава) и коррозионное растрескивание (коррозия при одновременном воздействии химических реагентов и высоких механических напряжений). Данные виды коррозии особенно опасны, так как может привести к быстрому разрушению машины, аппарата или конструкции. Скорость коррозии выражают несколькими способами. Наиболее часто пользуются массовым и главным показателями коррозии. Первый из них определяет потерю массы (в граммах или килограммах) за единицу времени (сек, час, сутки, год), отнесенную к единице площади (квадратный метр). Скорость электрохимической коррозии можно также выразить величиной тока, приходящегося на единицу площади металла.  

     Рис. 1. Виды коррозионных разрушений: а —  равномерное;  б — местное; в  — точечное; г — избирательное; д — межкристаллическое; е — транскристаллическое.

 

      Таким образом, самопроизвольное разрушение металла (коррозия) приносит большие убытки. Коррозия протекает по различным механизмам и вызывает разные виды разрушений.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Электрохимическая коррозия 

     Электрохимическая коррозия является наиболее распространенным типом коррозии металлов. По электрохимическому механизму корродируют металлы в контакте с растворами электролитов (морская вода, растворы кислот, щелочей, солей) . В обычных атмосферных условиях и в земле металлы корродируют также по электрохимическому механизму , т.к. на их поверхности имеются капли влаги с растворенными компонентами воздуха и земли.

     Электрохимическая коррозия является гетерогенным и многостадийным процессом. Ее причиной является термодинамическая  неустойчивость металлов в данной коррозионной среде.

     Учение  о электрохимической коррозии ставит главный вопрос - вопрос о скорости коррозии и тех факторов, которые влияют на нее. С электрохимической точки зрения коррозия металла это не просто процесс окисления металла, т.к. этот переход должен сопровождаться сопряженно идущим восстановительным процессом. В результате ионизации освобождаются электроны и роль второго восстановительного процесса состоит в их ассимиляции подходящим окислителем (Д), образующим устойчивое соединение Ионизация и процесс ассимиляции электронов каким либо элементом среды (обычно Н ионы или О )представляет собой электрохимический процесс.

     В отличии от химического, электрохимические процессы контролируются (зависят) не только от концентрации реагирующих веществ, но и, главным образом, зависят от потенциала поверхности металла.

     На  границе раздела двух разнородных фаз происходит переход заряженных частиц - ионов или электронов из одной фазы в другую, следовательно, возникает разность электрических потенциалов, распределения упорядоченных электрических зарядов, т.е. образование двойного электрического слоя.

     Возникновение межфазового скачка потенциала можно  объяснить следующими основными причинами; но рассмотрим только те, которые приводят к коррозии металлов, а точнее переход катионов металла из электролита на металл (электродный потенциал) адсорбция анионов электролита на металле (адсорбционный потенциал) возникновение ионно-адсорбционного потенциала за счет одновременной адсорбции поляризуемого атома кислорода и перехода катионов из металла в электролит.

     По  известным причинам, абсолютное значение межфазовой разности потенциалов измерить нельзя, эту величину можно измерить относительно другой величины и за точку отсчета принимается стандартный водородный потенциал. Наличие на межфазовой границе металл-раствор электролита двойного электрического слоя оказывает существенное влияние на процесс, а , в частности, на скорость коррозии металлов. При изменении концентрации (плотности) положительных или отрицательных частиц в растворе или металле может измениться скорость процесса растворения металла. Именно их этих соображений электродный потенциал является одной из важнейших характеристик, определяющих скорость коррозии металла.  

2.1 Термодинамика электрохимической коррозии металлов 

     Стремлением металлов переходить из металлического состояния в ионное для различных металлов различно. Вероятность такого перехода зависит также от природы коррозионной среды . Такую вероятность можно выразить уменьшением свободной энергии при протекании реакции перехода в заданной среде при определенных условиях.

     Но  прямой связи между термодинамическим рядом и коррозией металлов нет. Это объясняется тем, что термодинамические данные получены для идеально чистой поверхности металла, в то время как в реальных условиях корродирующий металл покрыт слоем (пленкой) продуктов взаимодействия металла со средой. Для расчетов изменения свободной энергии реакции при электрохимической коррозии металла используют величины электродных потенциалов.  

     Следовательно, для электрохимического растворения  металла необходимо присутствие  в растворе окислителя (деполяризатора, который бы осуществлял катодную реакцию ассимиляции электронов), обратимый окислительно - восстановительный потенциал которого положительнее обратимого потенциала металла в данных условиях.

     Катодные  процессы при электрохимической  коррозии могут осуществляться различными веществами.

  1. ионами;
  2. молекулами;
  3. оксидами и гидрооксидами (как правило малорастворимыми продуктами коррозии, образованными на поверхности металлов);
  4. органическими соединениями где R радикал или молекула.

     В коррозионной практике в качестве окислителей-деполяризаторов, осуществляющих коррозию, выступают ионы водорода и молекулы растворенного в электролите кислорода. При увеличении активности ионов металла (повышение концентрации ионов металла в растворе), потенциал анода возрастает, что приводит к торможению растворения металла. Понижение активности металла, напротив, способствует растворению металла.

Информация о работе Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита