Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита

Автор работы: Пользователь скрыл имя, 08 Апреля 2012 в 20:39, курсовая работа

Описание

Ионное состояние более выгодно, оно характеризуется более меньшей внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том , что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.

Содержание

Введение…………………………………………………………………..……….3
1 Коррозия и защита металлов…………………………………………...………5
1.1 Определение и классификация коррозийных процессов…………..……5
2. Электрохимическая коррозия………………………………………………….9
2.1 Термодинамика электрохимической коррозии металлов………….…...10
2.2 Схема процесса электрохимической коррозии металлов………...…….12
2.3 Гомогенные и гетерогенные пути электрохимической коррозии……..13
2.4 Механизм электрохимической коррозии……………………………..…15
2.5 Скорость электрохимической коррозии……………………………...….18
2.6 Анодные процессы при электрохимической коррозии металлов……...24
2.6.1 Термодинамические основы…………………………………………24
2.6.2 Классификация анодных процессов………………………………...25
2.6.3 Причины анодного растворения металлов…………………….....25
2.6.4 Анодная пассивность металлов………………………………...…27
3. Защита металлов от коррозии………………………………………………..29
3.1 Катодная и протекторная защита…………………………………...……40
Заключение…………………………………………………...…………….……46
Список использованных источников и литературы……………………...…48

Работа состоит из  1 файл

Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита. .doc

— 778.00 Кб (Скачать документ)

     Рассмотрим  условия, при которых возможна коррозия с кислородной и водород деполяризацией. Коррозия как самопроизвольный процесс протея если энергия Гиббса реакции G имеет отрицательное значение. Так как энергия Гиббса реакции непосредственно связана с ЭДС элемента , то возможность протекания коррозии может быть установлена по знаку ЭДС элемента. Если ЭДС элемента имеет положительное значение ( > 0), то коррозия возможна. Так как ЭДС равна разности потенциалов окислителя и восстановителя , то коррозия возможна при условии, что потенциал окислителя положительнее потенциала металла: >

     Потенциал кислородного электрода при 298 К  описывается уравнением

     E /OH =1,23 + 0,014718 gр - 0,059рН.

     Потенциал водородного электрода описывается уравнением

     E = - 0.059pH - 0.02951gp

     Уравнение позволяет определить возможность  протекания коррозии различных металлов. Если потенциал металла положительнее  потенциала кислородного электрода, то коррозия металла невозможна. Потенциал золота, например, в отсутствие лигандов во всей области рН положительнее потенциала кислородного электрода, поэтому золото с поглощением и выделением корродировать не может. Если потенциал металла положительнее потенциала водородного электрода и отрицательнее потенциала кислородного электрода, то коррозия возможна с поглощением кислорода и невозможна с выделением водорода. Наконец, если потенциал металла отрицательнее потенциала водородного электрода, то возможна коррозия как с поглощением кислорода, так и с выделением водорода. К таким металлам относятся щелочные и щелочно-земельные металлы, алюминий, цинк и др.

     Таким образом, при контакте раствора электролита  с металлами большинство металлов может корродировать с поглощением кислорода и лишь некоторые металлы - с выделением водорода.   

2.2 Схема процесса электрохимической коррозии металлов 

     С определенным упрощением процесс электрохимической  коррозии может быть представлен  в виде схемы.

  • анодный процесс - ионизация атомов металла с образованием ионов (гидратированных) в растворе и нескомпенсированных электронов в металле;
  • процесс переноса электронов в металле от зон анодной реакции и участками, на которых термодинамически и кинетически возможен катодных процесс;
  • процесс подвода окислителя-деполяризатора к катодным зонам;
  • катодный процесс- ассимиляция избыточных электронов деполяризатором, для которого этих зонах обеспечены термодинамические условия процесса восстановления по схеме:

     Эту схему можно представить как работу короткозамкнутого гальванического элемента. Но это только схема, т.к. зоны анодных и катодных процессов меняются во времени. В ходе коррозионного процесса изменяются не только свойства металлической поверхности, но и контактирующего раствора (изменение концентрации отдельных его компонентов). ПРи уменьшении, например, концентрации деполяризатора, у катодной зоны может оказаться, что катодная реакция деполяризации термодинамически невозможна.   

2.3 Гомогенные и гетерогенные пути электрохимической коррозии 

     Причину коррозии металлов в растворах, не содержащих одноименных ионов, объясняет теория необратимых потенциалов. Эта теория рассматривает поверхность металлов как однородную, гомогенную. Основной и единственной причиной растворения (коррозии) таких металлов является термодинамическая возможность протекания анодного и катодного актов. Скорость растворения (коррозии) будет определяться кинетическими факторами. Но гомогенную поверхность металлов можно рассматривать как предельный случай, который может быть реализован, например, в жидких металлах. (ртуть и амальгамы металлов). Для твердых металлов такое допущение будет ошибочным, хотя бы потому что различные р\атомы сплава (и чистого металла) занимают различное положение в кристаллической решетке. Наиболее сильное отклонение от гомогенной конструкции будет наблюдаться при наличии в металле инородных включений, интерметаллидов, границ зерен и т.д. В этом случае, разумеется, поверхность является гетерогенной.

     Установлено, что даже при наличии на поверхности металла неоднородностей в целом поверхность остается эквипотенциальной. Таким образом неоднородность поверхностей сплава не может являться основной причиной общей коррозии металла. Наиболее существенной в подобных случаях является ионизация растворения анодной составляющей вблизи катодной составляющей, это возможно, если на поверхности металлической конструкции возникают гальванические элементы. Рассмотрим некоторые из них:

  • неоднородность металлической фазы, обусловленная неоднородностью сплава, а также в результате микро и макровключений;
  • неоднородность поверхности металла в следствие наличия границ блоков и зерен кристаллов, выход дислокаций на поверхность, анизотропность кристаллов;
  • неоднородность защитных пленок на поверхности за счет микро и макропор пленки;
  • неоднородность защитных пленок на поверхности за счет неравномерного образования на поверхности вторичных продуктов коррозии.

     В общем случае, необходимо считаться  с возможностью протекания на анодных  участках наряду с основными анодными процессами катодных процессов, на катодных же участках могут протекать с пониженной скоростью анодные процессы растворения. Можно сделать вывод, что нет оснований противопоставлять "гомогенный" и "гетерогенный" пути протекания коррозионных процессов. Правильнее будет их рассматривать как факторы, взаимно дополняющие друг друга. Основной же причиной коррозии металлов остается по-прежнему термодинамическая вероятность протекания в данных условиях на металле анодных процессов ионизации металла и сопряженного с ним катодного процесса деполяризации.  

2.4 Механизм электрохимической коррозии 

     Коррозия  металла в средах, имеющих ионную проводимость, протекает через анодное окисление металла:

     

     и катодное восстановление окислителя (Ох)

     

     Окислителями  при коррозии служат молекулы кислорода , хлора , ионы , , и др. Наиболее часто при коррозии наблюдается ионизация (восстановление) кислорода:

     в нейтральной или щелочной среде

     в кислой среде

     и выделение водорода

     Коррозия  с участием кислорода называется коррозией с поглощением кислорода (коррозия с кислородной деполяризацией) (рис.2). Коррозия с участием ионов водорода называется коррозией с выделением водорода (коррозией с водородной деполяризацией) (рис.3).

     Кроме анодных и катодных реакций при электрохимической коррозии происходит движение электронов в металле и ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская вода, почвенная вода, вода атмосферы, содержащая , , и другие газы.

 

     

     

       
 

     Рис. 2. Схема коррозии стали при контакте с водой с поглощением кислорода (атмосферная коррозия). 

     Кроме электрохимических реакций при  коррозии обычно протекают вторичные  химические реакции, например, взаимодействие ионов металла с гидроксид-ионами, концентрация которых повышается в результате катодных реакций .

     Как видно, процессы электрохимической  коррозии подобны процессам, протекающим  в гальванических элементах.

     Основным  отличием процессов электрохимической  коррозии от процессов в гальваническом элементе является отсутствие внешней цепи. Электроны в процессе коррозии не выходят из корродирующего металла, а двигаются внутри металла.  

     

     Рис. 3. Схема коррозии стали в растворе с выделением водорода. 

     Химическая  энергия реакции окисления металла передается не в виде работы, а лишь в виде теплоты. Схема электрохимической коррозии железа в контакте с углеродом приведена на рис.3.

     На  анодных участках происходит реакция  окисления железа . На катодных участках происходит восстановление водорода .

     Причинами энергетической неоднородности поверхности  металла и сплава могут быть неоднородность сплава по химическому и фазовому составам, наличие примесей в металле, пленок на его поверхности и др. На поверхности металла могут быть участки, на которых катодные реакции протекают быстрее (катализируются), чем на других участках. Поэтому катодный процесс в основном будет протекать на участках, которые называются катодными. Наличие участков, на которых катодные реакции протекают быстрее, увеличивает скорость коррозионного процесса. На других участках будет протекать в основном растворение металла и поэтому они называются анодными. Катодные и анодные участки чередуются и имеют очень малые размеры, т.е. речь идет о микроанодах и микрокатодах и соответственно коррозионных микроэлементах. Таким образом, при наличии энергетической неоднородности поверхности металла коррозионный процесс заключается в работе огромного числа коррозионных микроэлементов. Коррозионный элемент в отличие от гальванического является короткозамкнутым микроэлементом.

     Однако  разрушение металла по механизму  работы короткозамкнутых элементов - не единственный путь электрохимической коррозии. Иногда энергетическая неоднородность металлов невелика и отсутствуют участки, катализирующие катодные реакции. Тогда как катодные, так и анодные процессы идут по всей поверхности металла. Коррозионный процесс в отсутствие участков, катализирующих катодные реакции, протекает медленнее, чем при наличии катодных катализаторов. Так, например, цинк высокой степени чистоты растворяется в растворе серной кислоты значительно медленнее, чем технический цинк, содержащий примеси, которые катализируют реакции выделения водорода.

2.5 Скорость электрохимической коррозии 

     Разность  потенциалов металла и окислителя определяют возможность коррозии. Более важной характеристикой служит скорость коррозии, выражаемая через потери металла в единицу времени. Скорость коррозии может быть также выражена по закону Фарадея через ток или плотность тока.

     Так как, электрохимическая коррозия протекает через несколько взаимосвязанных стадий, то скорость ее зависит от скорости самой медленной стадии, называемой лимитирующей (контролирующей), стадией процесса. Все остальные стадии вынуждены иметь скорость равную скорости лимитирующей стадии процесса. Поскольку коррозионные элементы являются короткозамкнутыми микроэлементами, движение электронов в металле не может быть лимитирующей стадией процесса. Движение ионов в растворе обычно также не лимитирует процесс коррозии ввиду очень малого расстояния между микроэлементами (исключение составляют растворы с очень малой электрической проводимостью). Следовательно, лимитирующими стадиями могут быть или реакции анодного окисления металла (анодный контроль), или реакции катодного восстановления окислителя (катодный контроль), или те и другие одновременно (смешанный контроль). Зависимость скорости коррозии (i ) от скоростей анодных и катодных реакций обычно представляют в виде коррозионных диаграмм (Рис.6), на которых наносят поляризационные кривые растворения металла (анодная реакция) и восстановлен окислителя (катодная реакция). Проекция точки пересечения кривых на ось абсцисс дает плотность тока коррозии (i ), а на ось ординат - потенциал корродирующего металла или сплава. Рассмотрим случай коррозии с лимитирующей катодной реакцией. Большинство металлов может корродировать с поглощением кислорода, причем реакция катодного восстановления кислорода часто бывает лимитирующей стадией коррозии

      или

     

     Растворимость кислорода в воде и водных растворах мала, так как при 25°С и р = 21 кПа (парциальное давление кислорода в атмосфере) в воде может быть растворено 2,6Ч10 моль/см3 кислорода. Поэтому катодное восстановление кислорода обычно лимитируется скоростью диффузии кислорода, и реакция протекает с концентрационной поляризацией (Рис.6, б). Максимальная скорость восстановления кислорода и, соответственно максимальная скорость коррозии определяется предельной плотностью тока i восстановления кислорода по уравнению:

     

     где - коэффициент диффузии кислорода; - концентрация кислорода в растворе; - толщина диффузионного слоя.

     Скорость  коррозии с кислородной деполяризацией растет с увеличением коэффициента диффузии, растворимости кислорода  и при перемешивании раствора (уменьшается  и растет). Кривая зависимости скорости коррозии от температуры в системе, сообщающейся с атмосферой, проходит через максимум при 70-80°С. Это обусловлено увеличением коэффициента диффузии кислорода и уменьшением растворимости кислорода в воде при повышении температуры.  

Информация о работе Коррозия и защита металлов. Электрохимическая коррозия. Катодная и протекторная защита