Автор работы: Пользователь скрыл имя, 24 Января 2012 в 16:12, реферат
Преобразователи приборы, задачей которых является определение состава и концентрации веществ, широко применяются для контроля технологических процессов, в химических, биологических, геологических, космических исследованиях, в сельском хозяйстве, медицине, криминалистике и в ряде других областей. Объектами рассматриваемых измерений практически являются все существующие вещества и химические элементы, которые могут находиться в различных агрегатных состояниях.
Введение…………………………………………………………………………... 3
1 Электрохимические методы………………………………………. 5
2 Электрофизические методы……………………….………………. 8
3 ионизационные методы…………………………….………………. 13
4 спектрометрические (волновые) методы……………………. 17
5 комбинированные методы…………………………………………. 24
заключение……………………………………………….……………………... 29
список литературы……………………………
Рисунок 3- Электрическая схема термокондуктометрического газоанализатора типа ТП
Для измерения концентрации компонентов в дисперсных средах (суспензия, пульпа) применяется калориметрический метод, основанный на зависимости теплофизических параметров дисперсной среды от соотношения ее фаз. Обычно измеряется при стабильной скорости потока. По схемным и конструктивным решениям калориметрические концентратомеры аналогичны тепловым расходомерам.
На тепловом методе основаны электрические гигрометры и психрометры точки росы, применяемые для измерения влажности газов. Измерение влажности газа по точке росы заключается в определении температуры поверхности воды, при которой устанавливается динамическое равновесие между количеством влаги, испаряющейся с поверхности, и осаждаемой обратно из газа. При практическом осуществлении метода измеряют температуру QP поверхности твердого тела (металлического зеркала), которое охлаждают до тех пор, пока не появится конденсат (роса). С помощью терморегулятора поддерживают температуру поверхности таким образом, чтобы количество конденсата не менялось. Известны гигрометры, в которых охлаждение зеркала производится с использованием эффекта Пельтье.
По температурам точки росы QP и исследуемого газа Q ( ) можно определить относительную влажность (в процентах)
%
где E(QP) и Е(Q) — упругости насыщенного пара соответственно при температурах QP и Q.
Достоинствами
гигрометров точки росы являются
относительно высокая точность и
возможность измерения
Психрометрические гигрометры основаны на измерении разности температур двух термопреобразователей (терморезисторы, термопары): сухого (Qc), находящегося в исследуемой газовой среде, и мокрого (Qм), который смачивается водой и находится в термодинамическом равновесии с газовой средой. Чем меньше влажность этой среды, тем сильнее испаряется влага с поверхности мокрого термопреобразователя и тем ниже его температура Qм. Психрометрические гигрометры в основном используются для измерения влажности газовых сред при температурах 0 – 100 °С. Измерительная цепь таких гигрометров обычно представляет собой автоматический мост или компенсатор.
Разновидностью теплового метода анализа является термохимический метод, применяемый для определения суммарной концентрации примесей в органических веществах или для определения чистоты таких веществ. Метод основан на зависимости температуры кристаллизации вещества от суммарного содержания примесей и позволяет определять содержание примесей в диапазоне 0,5 – 1 % с погрешностью 20 %.
Магнитный метод. Этот метод получил широкое применение для измерения концентрации кислорода в газовых средах, поскольку из всех газов кислород обладает наибольшей магнитной восприимчивостью. Магнитные методы применяются для поисков полезных ископаемых, определения магнитных включений в немагнитных материалах, в дефектоскопии и магнитном структурном анализе.
На рисунке 4, а, б показаны конструкция датчика и схема измерительной цепи термомагнитного кислородомера. Датчик представляет собой кольцевую камеру с горизонтальной трубкой, на которую намотана нагревающая платиновая обмотка, разделенная на две секции r1 и r2. У левого конца горизонтальной трубки расположены полюсные наконечники магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается.
У левого конца горизонтальной трубки расположены полюсные наконечники магнита NS, поэтому парамагнитный газ всасывается с левой стороны в горизонтальную трубку и в ней подогревается. Так как при нагревании газа его магнитная восприимчивость падает, то холодный газ, втягиваясь в магнитное поле, будет выталкивать нагретый газ. В результате в горизонтальной трубке газ движется слева направо со скоростью, пропорциональной концентрации кислорода в испытуемой газовой смеси. Левая секция r1 охлаждается холодной смесью, поступающей из камеры. В правую половину горизонтальной трубки газовая смесь поступает уже нагретой, благодаря чему охлаждение правой секции обмотки r2 значительно меньше, чем левой. Обе секции обмотки включены в два соседних плеча моста.
Высокая
точность измерения при больших
концентрациях кислорода
Магнитные
кислородомеры применяются для
измерения концентраций кислорода
в широком диапазоне от 0 до 100% объемных
в различных газовых смесях с основной
погрешностью 0,1 – 5 %. Постоянная времени
таких газоанализаторов 10 – 90 с.
3 Ионизационные методы
Ионизационные методы основаны на ионизации анализируемого вещества и измерении ионного тока, пропорционального концентрации определяемого компонента. Они широко применяются в вакуумметрах, ионизационных газоанализаторах, в масс-спектрометрах, а также для измерения аэрозолей, влажности газов и др. Существуют разнообразные способы ионизации анализируемого вещества. Наибольшее применение для целей анализа получили:
а) ионизация газов электронами, возникающими вследствие автоэлектронной эмиссии (преобразователи с холодным катодом) и термоэлектронной эмиссии (преобразователи с горячим катодом);
б)
электроразрядный способ ионизации, основанный
на зависимости характеристик
в) ионизация за счет облучения анализируемого вещества радиоактивным и рентгеновским излучением;
г) термическая ионизация молекул в пламени водорода;
д) ионизация с помощью лазерного излучения.
Наряду с указанными методами ионизации для анализа находят также применение и ряд других способов, таких, как окислительно-ионизационный, способ поверхностной ионизации, эмиссия положительных ионов, захват электронов, фотоионизационный и др.
Ионизация атомов и молекул электронами, возникающими вследствие авто- и термоэлектронной эмиссии, широко применяется в вакуумметрах и масс-спектрометрических анализаторах. Датчик такого ионизационного вакуумметра обычно представляет собой вакуумный триод с патрубком для присоединения объекта, где измеряется вакуум. При постоянных значениях анодного напряжения и тока накала значение ионного тока, проходящего через сетку, зависит от абсолютной концентрации газа в межэлектродном пространстве. Диапазон измерений таких вакуумметров составляет Па. При больших давлениях может перегореть катод. Чувствительность датчика 75 мкА/Па. На 1–2 порядка больше чувствительность и верхний предел измерений у вакуумметров с магнитоэлектроразрядным датчиком, в котором под действием магнитного поля увеличивается длина пробега электронов и соответственно ионный ток. Недостатком таких вакуумметров является зависимость показаний от рода газа и внешних магнитных полей.
Ионизационный метод с использованием радиоактивного излучения применяется в вакуумметрах, газоанализаторах и детекторах хроматографов . Для ионизации газа обычно используются α (ядра атомов гелия)- и β (электроны, позитроны)-излучения, обладающие большой ионизирующей способностью.
Наиболее
распространенными
Рисунок 5 - Схема дифференциального ионизационного анализатора газов
Такие анализаторы имеют практически линейную характеристику в широком диапазоне, малую инерционность, высокую чувствительность и способны работать при температурах до 300 °С.
Метод
ионизации метастабильными
Хорошими метрологическими характеристиками обладает триодный аргоновый датчик (рисунок 6), у которого, кроме анода 1, катода 2 и источника β-излучения 3, имеется коллекторный электрод 4, сигнал с которого подается на электрометрический усилитель. Порог чувствительности такого датчика г/с, постоянная времени 1 – 5 с, нелинейность характеристики 1,2 %.
Ионизационно-пламенный метод (рисунок 7) основан на ионизации молекул исследуемого вещества в водородном пламени. Чистый водород, сгорая в воздухе, почти не образует ионов, поэтому водородное пламя имеет очень большое сопротивление (1012—1014 Ом). Если вместе с водородом в преобразователь подступает исследуемый горючий газ, то в результате термической диссоциации и окисления происходит ионизация молекул газа и сопротивление между электродами 1 и 2 преобразователя резко падает. Вследствие этого увеличиваются ток и падение напряжения на резисторе R, которое через усилитель подается на самопишущий прибор.
Если
вместе с водородом в преобразователь
подступает исследуемый горючий газ, то
в результате термической диссоциации
и окисления происходит ионизация молекул
газа и сопротивление между электродами
1 и 2 преобразователя резко падает.
Вследствие этого увеличиваются ток и
падение напряжения на резисторе R,
которое через усилитель подается на
самопишущий прибор. Метод диссоциаций
и окисления происходит ионизация молекул
газа и сопротивление между электродами
1 и 2 преобразователя резко падает.
Вследствие этого увеличиваются ток и
падение напряжения на резисторе R,
которое через усилитель подается на
самопишущий прибор. Метод позволяет обнаруживать
микроконцентрации органических соединений,
поступающих в преобразователь со скоростью
10–12 – 10–14 г/с. Чувствительность
анализаторов составляет 104
– 105
, постоянная времени 1 мс. Линейный
рабочий диапазон 106
– 107, рабочая температура до 400 °С.
4 Спектрометрические (волновые) методы
Спектрометрические методы основаны на избирательной способности различных веществ поглощать, изучать, отражать, рассеивать или преломлять различного рода излучения. Эта группа методов включает в себя многочисленные методы, в которых используется широкий спектр длин волн – от звукового диапазона (103 Гц) до рентгеновских и гамма-излучений (1018 Гц).
Информация о работе Методы и преобразователи для измерения концентрации вещества