Производство уксусной кислоты

Автор работы: Пользователь скрыл имя, 23 Марта 2012 в 22:37, реферат

Описание

Получают уксусную кислоту окислением ацетальдегида и другими методами, пищевую уксусную кислоту уксуснокислым брожением этанола. Применяют для получения лекарственных и душистых веществ, как растворитель (например, в производстве ацетата целлюлозы), в виде столового уксуса при изготовлении приправ, маринадов, консервов. Уксусная кислота участвует во многих процессах обмена веществ в живых организмах. Это одна из летучих кислот, присутствующая почти во всех продуктах питания, кислая на вкус и главная составляющая уксуса.

Содержание

ВВЕДЕНИЕ
1.АНАЛИТИЧЕСКИЙ ОБЗОР
1.1 Теоретические сведения об уксусной кислоте
1.2 Применение уксусной кислоты
1.3 Основные способы получения уксусной кислоты
1.3.1 Получение уксусной кислоты окислением ацетальдегида
1.3.2 Получение уксусной кислоты окислением н-бутана
1.3.3 Производство уксусной кислоты окислением н-бутенов
1.3.4 Производство уксусной кислоты окислением парафинов С4-С8 в кислоты
1.3.5 Производство уксусной кислоты из метанола и оксида углерода
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Химизм процесса
2.2 Описание технологической схемы
2.3 Технико-технологические расчёты
2.3.1 Материальный баланс реактора и стадии синтеза уксусной кислоты
ЗАКЛЮЧЕНИЕ

Работа состоит из  1 файл

уксусная кислота.doc

— 302.00 Кб (Скачать документ)

Рисунок 1.4. Схема окисления бензина в жидкой фазе в кислоты С1—С3

 

1.3.5 Производство уксусной кислоты из метанола и оксида углерода

Производство уксусной кислоты жидкофазным карбонилированием метанола осуществляется при 250°С и 63,7 МПа в присутствии в качестве катализатора карбонила и иодида кобальта:

 

CH3OH + CO → CH3COOH

 

Побочными продуктами являются пропионовая кислота и более высококипящие продукты, а также оксид и диоксид углерода. На 1 т уксусной кислоты расходуется 0,6 т метанола и 620 м3 оксида углерода. Одновременно получается 20 кг пропионовой кислоты и 20 кг высококипящих продуктов.

Синтез уксусной кислоты из метанола впервые был разработан и осуществлен в промышленном масштабе фирмой ВАSF.

 

1 — колонна синтеза;2 — сепаратор высокого давления;3 — сепаратор низкого давления;4, 5 и 6—ректификационные колонны;

I — метанол + катализатор; II — окись углерода;II — продукты синтеза;IV — отработанный газ; V — раствор катализатора;VI — метанол;VII — кислота-сырец;VIII — товарная уксусная кислота;IX — кубовый остаток на сжигание.

Рисунок 1.5 Технологическая схема синтеза уксусной кислоты карбонилированием метанола

 

На рисунке 5 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой ВАSF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода.

Синтез осуществляется при 250 °С и 70—75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 снова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подастся в колонну б, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание.

Выход уксусной кислоты составляет 90% в расчете на метанол

 


2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

 

2.1 Химизм процесса

 

Синтез уксусной кислоты из метанола впервые был разработан и осуществлен в промышленном масштабе фирмой ВАSF. Предполагается, что при синтезе кислот из спиртов первоначально происходит расщепление связи углерод — кислород с образованием галогеналкила:

 

RСН2ОН+НХ →RСН2Х+ Н2О

 

Галогеналкил далее взаимодействует с гпдрокарбоннлом металла с образованием алкилкарбонилов, ацилкарбоннлов и кислот

 

RCН2Х+НМе (СО)4 RCН2 Ме (СО)4 +НХ

RCН2Ме(СО)4 → RCН2СОМе(СО)3+СО (-СО) → RCН2СОМе(СО)4

RCН2СОМе(СО)3,4+Н2О→RCН2СООН +НМе(СО)3,4

 

Гидрокарбонил металла получается по уравнению:

 

Ме2(СО)8 +СО+Н2О→2НМе(СО)4 +СО2

 

По-видимому, промотирующес влияние галогеноводородных кислот объясняется образованием в их присутствии галогензамещенных гидрокарбоннлов металла

 

НХ + Ме(СО)4НМе(СО)2Х +2СО

 

которые обладают большей кислотностью п каталитической активностью по сравнению с незамещенными гидрокарбониламн.

Реакцию карбонилирования спиртов могут катализировать как кислые (фосфорная и серная кислоты, смесь трехфтористого бора с водой), так и щелочные (алкоголяты щелочных металлов) агенты.

Однако наиболее эффективными катализаторами являются соединения никеля, кобальта, железа, родия, рутения и палладия. Эти элементы вводятся в реакционную зону в виде карбонилов, галогенидов или комплексных солей.

В качестве промоторов используются иод, йодистый метил, иодистоводородная кислота.

Особенно эффективны катализаторы на основе родия, промотированного иодом. В их присутствии синтез уксусной кислоты из метанола успешно протекает при сравнительно низких давлениях (3 МПа и ниже), причем достигается практически количественный выход уксусной кислоты (~99%). Катализатор может быть использован многократно.

 

2.2 Описание технологической схемы

 

Процесс получения уксусной кислоты включает следующие основные стадии: синтез уксусной кислоты; улавливание легких фракций; очистку уксусной кислоты; приготовление и регенерацию катализатора. Схема потоков стадий синтеза и отгонки легких фракций приведена на рисунке 2.2.

 


1 — оксид углерода; 2 — метанол; 3 — дистиллят;4 — кубовые остатки;5, 7, 9 — отдувочные газы;6, 8, 10 — жидкая фаза;

РТ1 — реактор; АТ1, АТ2 — подогреватели; АТ3 — холодильник конденсатор; С1, С2, СЗ — сепараторы; КЛ1 — колонна отгонки легких фракций

Рисунок 2.1 Схема потоков стадия синтеза уксусной кислоты

 

В реактор синтеза барботажного типа РТ1, снабженный перемешивающим устройством, насосом из сборника подают метанол, который предварительно нагревают водяным паром от 40 до 140—180°С в подогревателе АТ1. Оксид углерода поступает в реактор через барботажиое кольцо, в результате чего образуется дисперсная фаза, способствующая быстрому растворению газа в реакционной смеси. Время пребывания веществ в реакционной зоне (0,25—0,30 ч) регулируют уровнем жидкости в реакторе (75—80% от его вместимости), а полноту процесса синтеза при давлении 2,8 МПа и температуре 185°С — тщательным перемешиванием всех потоков, поступающих в реактор, с помощью мешалки.

Реакционная жидкость (уксусная кислота и раствор катализатора с промотором) из реактора РТ1 поступает в сепаратор С2, где за счет снижения давления до 62 кПа происходит частичное испарение жидкости и снижение температуры до 116°С. Здесь же происходит отделение пара от жидкости. Жидкость, содержащую катализатор, из нижней части сепаратора С2 возвращают в реактор РТ1, а пары, выходящие из верхней части сепаратора, поступают в колонку отгонки легких фракций КЛ1. Эти пары содержат уксусную кислоту, метилиодид, иодоводород, воду и незначительные количества метанола, метилацетата, несконденсировавшихся газов.

Из верхней части колонны КЛ1 отбирают метилиодид с парами воды и уксусной кислоты, конденсируют в холодильнике-конденсаторе и разделяют в сепараторе СЗ на две фазы: тяжелую и легкую. Тяжелую фазу, содержащую в основном метилиодид, возвращают в реактор РТ1; часть легкой фазы используют в качестве флегмы для орошения колонны КЛ1, а часть возвращают в реактор синтеза.

Из куба колонны КЛ1 выводят тяжелую фазу, состоящую из метилиодида и уксусной кислоты; этот поток самотеком поступает в сепаратор С2 и таким образом иодоводород и родий возвращают в цикл.

Сырую уксусную кислоту отбирают из средней части колонны легких фракций КЛ1 и направляют на стадию очистки.

Из верхней части реактора синтеза РТ1 выводят отдувочные газы, содержащие пары метилиодида, уксусной кислоты и воды. После охлаждения в холодильнике-конденсаторе АТЗ газовую фазу отделяют от жидкой в сепараторе С1, после чего жидкость возвращают в реактор синтеза, а газ направляют на очистку.

 


2.3 Технико-технологические расчёты

 

2.3.1 Материальный баланс реактора и стадии синтеза уксусной кислоты

Исходные данные:

 

годовая производительность агрегата в расчете на 100%-ю. уксусную кислоту 120000 т; годовой фонд рабочего времени 8450 ч; состав материальных потоков:

технический оксид углерода — поток 1 (т, %): Н2— 1; N2 — 2,0; СО — 97,0;

метанол — поток 2 (ф, %): СН3ОН — 99,9; Н2О —0,1;

дистиллят колонны отгонки легких фракций — поток 3 (w, %): СН3I —48,9; СН3СООН — 22,4; СН3СООСН3 — 4,0; Н2О — 24,7;

кубовые остатки колонны отгонки легких фракций — поток 4 (w, %); СН3СООН — 90,3; С2Н5СООН —0,1; Н2О — 7,7; НI — 1,9;

отдувочные газы реактора — поток 5 (φ, %): Н2 — 5,2; N2— 4,2; СО —30,1; СО2 — 2,7; СН3I — 26,0; СН3СООН — 11,2; СН3СООСН3— 1,1; Н2О — 19,5;

жидкая фаза из реактора — поток 6 (w, %): СН3I — 9,7;СНзСООН — 70,0; СН3СООСН3 — 0,9; С2Н5СООН — 0,1; Н2О— 16,3; HI — 3,0;

отдувочные газы сепаратора СI — поток 7 (φ, %): Н2— 12,0; N2 —9,7; СО —68,8; СО2 — 4,9; СН3I — 4,1; СН3СООН —0,1; СН3СООСН3 —0,1; Н2О 0,3;

количество пропионовой кислоты, образующейся в процессе, 1 кг на 1 т уксусной кислоты;

избыток оксида углерода от стехиометрического расхода 16,4%.

 

Последовательность расчета:

а) рассчитывают расход сырья и количество продуктов по реакциям получения уксусной кислоты и побочных продуктов;

б) определяют состав материальных потоков 1 — 4 и состав реакционной массы;

в) рассчитывают состав отдувочных газов реактора синтеза, газовой и жидкой фаз сепаратора C1;

г) определяют состав жидкой фазы из реактора, газовой и жидкой фаз сепаратора C2;

д) составляют материальный баланс реактора и стадии синтеза уксусной кислоты.

Часовая производительность реактора по 100%-и уксусной кислоте:

 

120000*1000/8450=14201,2 кг/ч или 236,687 кмоль/ч

 

В соответствии с исходными данными образуется пропионовой кислоты:

 

1*14,2=14,2 кг/ч или 0,192 кмоль/ч

 

По реакциям

 

СН3ОН+СО = СН3СООН,                                                        (1)

СН3ОН+2СО + 2Н2 = С2Н5СООН + Н20                                                         (2)

 

расходуется:

 

метанола: 236,687 + 0,192=236,879 кмоль/ч или 7580,1 кг/ч;

оксида углерода: 236,687+ 0,192*2 = 237,071 кмоль/ч или 6638,0 кг/ч;

водорода: 0,192*2=0,384 кмоль/ч или 0,8 кг/ч;

образуется водяного пара 0,192 кмоль/ч или 3,5 кг/ч.


По реакции

 

СО + Н2О = СО2+Н2                                                                      (3)

 

расходуется 1,85% от общего расхода оксида углерода, что составляет:

 

237,071 *1,85/(100,00 — 1,85) =4,468 кмоль/ч или 125,1 кг/ч.

Расходуется водяного пара: 4,468 кмоль/ч или 80,4 кг/ч;

 

образуется

 

диоксида углерода: 4,468 кмоль/ч или 196,6 кг/ч;

водорода: 4,468 кмоль/ч или 8,9 кг/ч.

Всего расходуется по реакциям (1)—(3)

оксида углерода: 237,071+4,468=241,539 кмоль/ч или 6763,1 кг/ч;

водяного пара: 4,468—0,192=4,276 кмоль/ч или 77,0 кг/ч;

образуется водорода: 4,468—0,384=4,084 кмоль/ч или 8,2 кг/ч.

Фактически подают сырья:

технического метанола: 7580,1*100,0/99,9=7587,7 кг/ч, в том числе воды:

 

7587,7—7580,1=7,6 кг/ч;

 

оксида углерода:

 

241,539* (100+16,4)/100=281,151 кмоль/ч или 7872,2 кг/ч,

 

где 16,4 — избыток оксида углерода от стехиометрического расхода, %.

Рассчитывают состав технического оксида углерода (поток 1):

H2 N2 CO Сумма

φi(xi), % 1,0 2,0 97,0 100,0

nτ, кмоль/ч 2,898 5,797 281,151 289,846

М, кг/кмоль 2 28 28 -

mτ,кг/ч 5,796 162,316 7872,2 8040,312

 

Остается оксида углерода в реакционной массе:

 

281,151—241,539=39,612 кмоль/ч или 1109,1 кг/ч.

 

Расходуется:

дистиллята колонны отгонки легких фракций:

 

14201,2*1,8= = 25562,2 кг/ч;

 

кубовых остатков

 

14201,2*0,0665=944, 4 кг/ч;

 

где 1,8 и 0,0665 — массовые отношения подаваемых на синтез продуктов очистки уксусной кислоты и 100%-и уксусной кислоты.

Определяют расход и состав потоков 3 и 4.

Наличие метилацетата в дистилляте колонны отгонки легких фракций объясняется тем, что, хотя на стадии синтеза он практически не образуется, на последующих стадиях вследствие протекания реакций

 

СН3ОН + СН3СООН = СН3СООСН3+Н2О                                                                      (4)

СН3СООСН3 + HI = СН3СООН + СН3I                                                                      (5)

 

метилацетат накапливается в системе, так как реакция 5 протекает медленнее реакции 4.

Рассчитывают состав дистиллята (поток 3):

 

CH3I CH3COOH CH3COOCH3 H2O Сумма

wi,% 48,09 22,4 4,0 24,7 100,0

mτ, кг/ч 12499,9 5725,9 1022,5 6313,9 25562,2

 

Рассчитывают состав кубовых остатков (поток 4):

 

CH3COOH C2H5C00H H2O HI Сумма

wi,% 90,3 0,1 7,7 1,9 100,0

mτ, кг/ч 852,8 0,9 72,7 17,9 944,4

 

Состава реакционной массы Таблица 4

 

mτ,кг/ч

H2

5,796+8,2=13,996

N2

162,316

CO

1109,1

CO2

196,6

CH3I

12499,9

CH3COOH

14201,2+5725,9+852,8=20779,9

CH3COOCH3

1022,5

C2H5COOH

0,9+14,2=15,1

H2O

7,6+6313,9+72,7-77,0=6317,2

HI

17,9

Сумма

42134,512

Информация о работе Производство уксусной кислоты