Рентгеноструктурный анализ

Автор работы: Пользователь скрыл имя, 02 Апреля 2012 в 09:04, реферат

Описание

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Содержание

Введение………………………………………………………………..3
Теоретическая часть…………………………………………………...5
Методы рентгеновской съемки кристаллов…………………………19
Аппаратная реализация
ДРОН-3…………………………………………………………………25
ДРОН-2…………………………………………………………………31
Применение…………………………………………………………….33
Заключение……………………………………………………………..36
Список литературы……………………………………………………..37

Работа состоит из  1 файл

рентгеностр.doc

— 857.50 Кб (Скачать документ)

до 1,38 Å, т. е. становится близкой к длине двойной связи С—С.

Методом рентгеноструктурного анализа можно точно измерять валентные углы, в частности валентные углы атома углерода. Как известно, если взаимодействия четырех валентно не связанных атомов, присоединенных к атому углерода, взаимно уравновешены, то связи образуют друг с другом тетраэдрические углы (109°28'). Но если не все заместители одинаковы, то равновесие нарушается. В парафиновых цепях атомы углерода, расположенные через один, находятся на расстояниях, существенно меньших суммы их вандерваальсовых радиусов, а потому испытывают отталкивание, которое приводит к возрастанию угла ССС примерно до 112° и уменьшению угла НСН примерно до 108°. Еще больше могут искажаться углы в циклических соединениях. На рис.3 изображена молекула нортрициклена, в которой величины углов при метиленовых группах сильно отличаются от идеальных в результате взаимного отталкивания углеродных атомов. Если бы сохранились тетраэдрические углы, то атомы углерода метиленовых групп находились бы друг от друга на расстоянии 2,2 Å, а

Рис.3.  Нортрициклен

 

вершинный атом углерода — на расстоянии 2,5 Å от углеродных атомов треугольного основания. В реальной структуре напряжения распределяются равномерно и все указанные расстояния соответственно становятся равными 2,35 Å.

Интересные результаты были получены при рентгеноструктурном исследовании длинноцепочечных молекул. Длинная цепочка групп СН2 парафинового углеводорода обладает большой подвижностью благодаря возможности вращения около ординарных связей. Энергетически наиболее выгодной является такая цепочка, у которой центры атомов углерода образуют плоский зигзаг. Так как длина углерод-углеродной связи равна 1,53 Å, а все углы ССС равны 112°, то вдоль прямой линии, проведенной через центры углеродных атомов и параллельной длинной оси цепочечной молекулы, атомы углерода будут повторяться через 2,54 Å:

 

Рентгеновские исследования показали, что у твердых парафинов, кислот и других соединений, построенных в виде длинной цепи, молекулы имеют аналогичную зигзагообразную вытянутую форму. В кристалле такие молекулы образуют слои, причем концевые группы молекул каждого слоя лежат в одной плоскости (рис. 4). Кристаллы парафинов бывают двух типов:

Рис.4. Упаковка молекул в кристаллах парафинов.

 

в одних плоскость концевых групп перпендикулярна (рис. 4, А), в других — наклонена к осям молекул (рис. 4, Б). Рентгеновскими измерениями довольно легко устанавливается толщина слоя d. Для случаев, когда плоскости концевых групп перпендикулярны к осям цепей, удлинение молекулы на две группы СН2 должно вызывать увеличение толщины слоя на 2,54 Å. Такие соотношения действительно наблюдаются на опыте.

Рентгеновские измерения межплоскостных расстояний у кристаллов веществ с длинными цепями могут быть использованы для определения длины молекулы, т. е. для получения некоторых важных сведений о строении молекулы вещества.

Аналогично парафинам построены кристаллы жирных кислот. В слое, толщина которого близка к длине углеродной цепи молекулы кислоты, карбоксилы всех молекул обращены в одну и ту же сторону, т. е. на одной стороне слоя лежат только карбоксильные группы, а на другой — метальные группы. Слои расположены по отношению друг к другу по типу «голова к голове», т. е. метильные группы одного слоя примыкают к метильным группам другого; соответственно карбоксильные группы прилегают к карбоксильным группам. Таким образом, можно себе представить, что в кристалле имеются двойные слои, сомкнутые карбоксильными группами, причем вследствие образования водородных связей между этими группами два слоя оказываются прочно связанными. Наоборот, связь слоев по плоскостям, ограниченным метильными группами, вследствие насыщенности метилов является рыхлой, подобно связям отдельных плоскостей в кристалле графита. Этим объясняется скользкость кристаллов жирных кислот (и жиров).

Найденным при помощи рентгеноструктурного анализа зигзагообразным характером длинных цепей может быть объяснена хорошо известная периодичность свойств четных и нечетных членов гомологического ряда (см., например, температуры плавления кислот). Периодичность внутри ряда естественно объясняется монотонным возрастанием длины цепи при полном сохранении характера взаимного расположения цепей. А чем объясняется то, что молекулы с четными и нечетными числами атомов углерода укладываются в две последовательности, а не в одну, т. е. в чем различие этих двух рядов? Это различие лежит в симметрии молекулы. Если число атомов углерода нечетное

 

то через середину цепи можно провести плоскость симметрии, Если же число атомов четное

 

то таким элементом симметрии молекула не обладает. Ее возможная симметрия — центр инверсии, или двойная ось симметрии, перпендикулярная цепи.

Поскольку способ упаковки молекул зависит от их симметрии, молекулы двух указанных рядов образуют кристаллы, различающиеся энергией решетки. Это и приводит к указанному выше чередованию свойств у членов гомологического ряда, получившему название «четно-нечетного эффекта».

С наибольшим успехом рентгеноструктурный анализ может быть применен к веществам, образующим одиночные кристаллы. Однако рентгеновское исследование высокомолекулярных соединений также приводит к ряду интересных результатов. Этим методом были с успехом исследованы такие высокополимерные соединения, в которых длинноцепочечные молекулы расположены с высокой степенью упорядоченности. К их числу относятся растянутый каучук, многие полиамиды, целлюлоза и т. д. Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений, Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов; при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков; для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки.

 

                        Методы рентгеновской съёмки кристаллов

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения,  должен быть переменным.

2d sinθ = nλ

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на  монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 5 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.5 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис. 5. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах  можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования. В методе порошка (рис 6.а), так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения  так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

 

Рис 6.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности;  4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием dhk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому dhk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской  фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 6.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния  d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники эксперимента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры. В методе вращения (рис. 7.а) переменным параметром является угол q. Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 7.б).

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. 7.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;б – типичная рентгенограмма вращения.

 

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1’) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно. В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна. Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей  и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 8) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы. 

 

             

 

 


 

Рис. 8. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

 

 

 

 

 

 

Аппаратная реализация

 

Рентгеновский дифрактометр ДРОН-2,0. Является дифрактометром общего назначения, имеющим более высокий», класс, чем ДРОН-1,5 и ДРОН-0,5, полностью их заменяет и обладает следующими преимуществами: а) более высокой производительностью, что обеспечивается большей мощно­стью высоковольтного источника питания; б) возможностью одновременно с дифрактометрическими исследованиями проводить исследования с помощью фотографического способа  регистрации на выносной стойке; в) больший стабильностью высокого напряжения, питающего трубку, и анодного тока трубки; г) наличием точной и простой системы взаимной юстировки трубки и гониометра с обеспечением надежной фиксации отъюстированнго положения; д) возможностью записи дифракционной картины не только на самопишущем потенциометре и цифропечатающем устройстве, но также и на  перфоленте, которая может быть введена в ЭВМ для последующей обработки; е) возможностью автоматического определения интегральной интенсивности заданного участка дифракционной картины.

Пределы измерения углов дифракции  от -90 до +164, точность измерения углов дифракции   ± 0,005; размеры истинного фокуса рентгеновских трубок 1*12мм (трубка БСВ-12) 0,04*8мм (трубка БСВ- 14); потребляемая мощность не более 6ква, максимальная выходная мощность источников питания 2квт, максимальное напряжение на рентгеновской трубки 50кв, максимальный ток рентгеновской трубки 60 ма; стабилизация высокого напряжения и анодного тока при одновременной работе 2 трубок при колебаниях сетевого напряжения в пределах ±7% от номинала поддерживается с точностью 0,1%; суммарная ошибка измерения интенсивности за 10 часов работы не более 0,5%. В комплект установки входят высоковольтный источник питания

Информация о работе Рентгеноструктурный анализ