Рентгеноструктурный анализ

Автор работы: Пользователь скрыл имя, 02 Апреля 2012 в 09:04, реферат

Описание

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Содержание

Введение………………………………………………………………..3
Теоретическая часть…………………………………………………...5
Методы рентгеновской съемки кристаллов…………………………19
Аппаратная реализация
ДРОН-3…………………………………………………………………25
ДРОН-2…………………………………………………………………31
Применение…………………………………………………………….33
Заключение……………………………………………………………..36
Список литературы……………………………………………………..37

Работа состоит из  1 файл

рентгеностр.doc

— 857.50 Кб (Скачать документ)

Иллюстрацией может служить рентгенограмма, приведенная на рис. 2, полученная с кристалла гексагональной системы при просвечивании в направлении гексагональной оси . На рисунке видим, что .в расположении пятен наблюдается симметрия шестого порядка относительно центрального пятна, что отвечает симметрии гексагонального кристалла в направле­нии оси С6. Таким образом, рентгенограмма, полученная по методу непо­движного кристалла, выявляет прежде всего симметрию кристалла.

Всякое изменение в ориентировке кристалла сказывается на изменении соответствующей дифракционной картины. Таким образом, несколько рентгенограмм, полученных в раз­ных направлениях, позволяют сделать суждение о симметрии' кристалла.

 

 

Рис. 2. Рентгенограмма  гексагонального кpисталла, полученная при просвечивании в на­правлении оси шестого порядка.

 

Каждому интерференционному пятну на рентгенограмме отвечает определенное положение отражаю­щей плоскости с соответствующими индексами. Установление этих индексов позволяет в ряде случаев судить о кристалличе­ской структуре исследуемого вещества, так как для каждого-типа кристаллической структуры существует своя система ин­дексов.

Применение метода. В настоящее время метод неподвижно­го кристалла применяют главным - образом для определения ориентировки кристаллов и их симметрии. Кроме того, этот .метод используют для определения дефек­тов кристаллической структуры, возникающих в процессе роста или деформации кристаллов при исследования процессов рекри­сталлизации и старения металлов.

 

 

 

 

Применение

 Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы,  типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением  q. По  ширине, форме и интенсивности этих колец можно делать заключения об особенностях  ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является  также трудность определения положений лёгких атомов и особенно атомов водорода.

 


Заключение

Рентгеноструктурный анализ или рентгеновский структурный анализ, является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновских лучей. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т. е. порядка размеров атомов. Методами  рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно рентгеноструктурный анализ применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Круг задач, решаемый с помощью рентгеноструктурного анализа, очень широк и определяется как сущностью изучаемых явлений, так и конкретными особенностями изучаемых образцов. Это привело к разработке серии различных методик исследования и определило значительное многообразие аппаратуры, поскольку оказалось невозможным создать универсальный прибор, который мог бы использоваться для решения всех или большинства задач, решаемых рентгеноструктурными методами.

 

 

 

 

Список литературы

1. Жданов Г.С. Физика твёрдого тела, М., 1962.

2. Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957.

3. Блохин М.А., Методы рентгеноспектральных исследований, М., 1959.

4. Ванштейн Э.Е., Рентгеновские спектры атомов в молекулах химических соединений и в сплавах, М.-Л., 1950.

5. Бокай Г.Б., Порай-Кошиц М.А., Рентгеноструктурный анализ, М., 1964.

6. Шишаков Н.А., Основные понятия структурного анализа, М., 1961.

7. Миркин Л.И., Рентгеноструктурный анализ, М., «Наука», 1976.

8. Авдюхина В.М., Рентгенография, М., МГУ, 1986.

9. Шпольский Э.В., Атомная физика, том 1,изд. 7, М., «Наука», 1984.

10. Альберти Р.А, Даниэльс Ф., Физическая химия,изд.2, М., «Высшая школа», 1967.

11. Ольберти Р.А, Даниэльс Ф., Физическая химия,изд.2, М., «Высшая школа», 1978.

 

 

2

 



Информация о работе Рентгеноструктурный анализ