Выпарной аппарат

Автор работы: Пользователь скрыл имя, 11 Мая 2012 в 14:24, курсовая работа

Описание

В химической промышленности выпариванию подвергают растворы твердых веществ (главным образом водные растворы щелочей, солей и др.), а также растворы высококипящих жидкостей, обладающих при температуре выпаривания очень малым давлением пара (некоторые минеральные и органические кислоты, многоатомные спирты и др.).

Содержание

Введение
3

Основные условные обозначения
8
1.
Определение поверхности теплопередачи выпарных аппаратов
10
1.1
Расчёт концентраций упариваемого раствора
10
1.2
Определение температур кипения растворов
12
1.3
Расчёт полезной разности температур
18
1.4
Определение тепловых нагрузок
19
1.5
Выбор конструкционного материала
21
1.6
Расчёт коэффициентов теплопередачи
22
1.7
Распределение полезной разности температур
29
1.8
Уточнённый расчёт поверхности теплопередачи
30
2.
Определение толщины тепловой изоляции
54
3.
Расчёт барометрического конденсатора
55
3.1
Определение расхода охлаждающей воды
55
3.2
Расчёт диаметра барометрического конденсатора
55
3.3
Расчёт высоты барометрической трубы
55
4.
Расчёт производительности вакуум-насоса
60
5.
Расчёт диаметров трубопроводов и подбор штуцеров
62
6.
Расчёт насоса для подачи исходной смеси
65
7.
Расчёт теплообменника-подогревателя
71
8.
Расчёт вспомогательного оборудования выпарной установки
77
8.1.
Расчёт конденсатоотводчиков
77
8.1.1
Расчёт конденсатоотводчиков для первого корпуса выпарной установки
77
8.1.2
Расчёт конденсатоотводчиков для второго корпуса выпарной установки
78
8.1.3
Расчёт конденсатоотводчиков для третьего корпуса выпарной установки
79
8.2
Расчёт ёмкостей
80
9.
Механические расчёты основных узлов и деталей выпарного аппарата
81
9.1
Расчёт толщины обечаек
81
9.2
Расчёт толщины днищ
83
9.3
Определение фланцевых соединений и крышек
85
9.4
Расчет аппарата на ветровую нагрузку
86
9.5
Расчёт опор аппарата
91

Заключение
95

Библиографический список
97

Приложения
98

Работа состоит из  1 файл

Содержание.docx

— 1.22 Мб (Скачать документ)

 

;

 

 

где n – число площадок.

Общий изгибающий момент от ветровой нагрузки найдем по формуле:

 

 

9.5 Расчёт опор  аппарата

 

Расчет опор [9, 10], предназначенных  для цилиндрических колонных аппаратов  производят исходя из ветровой и сейсмической нагрузок. В таких опорах расчётом определяются: размеры рёбер, сварные  или паянные швы и местные  напряжения в цилиндрических стенках  аппарата в местах присоединения  к ним опор.

Отношение вылета к высоте ребра l/h рекомендуется принимать равным 0,5.

Расчётная толщина ребра  определяется по формуле:

 

(48)

 

 

где G – максимальный вес аппарата, МН (обычно бывает во время испытания, когда аппарат заполнен водой); n – число лап (не менее двух); z- число рёбер в одной лапе (1 или 2); σс.д – допускаемое напряжение на сжатие (можно принять равным 100 МН/м2); l – вылет опоры, м. Значение коэффициента k рекомендуется предварительно принять k = 0,6. Если при этом δ получится не менее l/13, то расчётная величина δ является окончательной. В противном случае значение коэффициента k необходимо уменьшить с пересчётом толщины δ и последующей проверкой l/δ по графику.

Определим основные размеры  опоры (лапы) для вертикального цилиндрического  аппарата, подвешенного на четырёх  лапах по следующим данным: максимальный вес аппарата G = 0,085 МН, число лап n = 4; конструкция лап – двухрёберная, z = 2; вылет лапы l = 0,2 м; Ск = 1 мм; диаметр корпуса Dв = 1,8 м.

Пренебрегаем отношением вылета лапы к высоте ребра l/h = 0,5.

Тогда м.

Толщину ребра определим  по формуле (48):

 м

Отношение > δ = 0,004, поэтому уменьшаем значение k до 0,27, при котором по графику .

Пересчитываем δ:

 м > м.

Принимаем толщину ребра  δ = 10 мм.

Общая длина сварного шва  определяется по формуле:

 

 

 м (49)

 

Прочность сварного шва проверим по формуле:

 

(50)

 

где Lш – общая длина сварных швов, м; hш – катет сварного шва, hш = 0,008 м; τш.с. – допускаемое напряжение материала на срез, τш.с. = 80 МН/м2.

То есть прочность обеспечена.

Определим опоры аппарата. При определении нагрузки на подвесную  опорную лапу все действующие  на аппарат нагрузки приводят к осевой силе Р, определяемой максимальным весом  аппарата при эксплуатации или при  гидравлических испытаниях, и моменту  М, зависящему от конструкции аппарата, и т. д. При учебных расчётах момент М можно принять равным нулю. Нагрузку на одну опору рассчитывают по соотношению:

 

(51)

 

Если М = 0, следовательно  , значит ,

где λ1 – коэффициент, зависящий от числа опор z. Примем z = 4, значит λ1 = 2.

Рассчитаем осевую силу Р = m ∙ g. Масса аппарата при гидравлических испытаниях равна:

 

 

m = mап + mводы (52)

mап = 8500 кг; mводы = V ∙ ρ, где V = ΣVсост.ч..

Зная технические характеристики аппарата найдём:

 м3

 м3

V = 3,14 + 20,57 + 2,88 = 26,59 м3

mводы = V ∙ ρ = 26,59 ∙ 1000 = 26590 кг

m = 13000 + 26590 = 39590 кг

Р = m ∙ g = 39590 ∙ 9,81 = 388378 Н

 кН

По ОСТ 26 – 665 – 79 [10] выбираем опору (тип 2) со следующими характеристиками:

 

Q, kH

а

а1

а2

в

в1

в2

с

с1

h

h1

s1

k

k1

d

dб

250

360

540

300

800

360

350

65

240

940

40

24

75

220

42

-

 

 

Заключение

 

Целью данного курсового  проекта являлся расчет выпарной установки непрерывного действия для  выпаривания растворяя сульфата натрия от начальной концентрации соли 6 % (масс.) до конечной концентрации 30% (масс.).

В ходе проектирования произведены  следующие расчеты: составление  и описание технологической схемы  выпарной установки, расчет основного  аппарата, подбор вспомогательного оборудования (теплообменной и насосной аппаратуры), а также был произведен расчет на прочность.

Маркировку выбранного оборудования сведем в таблицу 21.

Таблица 21 Маркировка оборудования

Наименование

Марка

1

Насос центробежный

Х 45/54

2

Вакуум-насос

ВВН-3

3

Теплообменник

600 ТНВ-8-М1

О/20-6-4 гр. Б

4

Конденсатоотводчик

45ч12нж

5

Ёмкость начального раствора

ГЭЭ1-1-63-0,6

6

Ёмкость упаренного раствора

ГЭЭ1-1-12,5-0,6

7

Обечайка

Х 18Н10Т

8

Барометрический конденсатор

КБ-2-600

9

Опора

2-1800-25-125-800

 

Произведенный анализ работы показал, что основной процесс теплопередачи  сосредоточен в греющей камере выпарного  аппарата. Интенсивность теплопередачи  повышается в аппаратах с вынесенной циркуляционной трубой, т. к. раствор  в ней не кипит и парожидкостная смесь не образуется. В них, по сравнению  с аппаратами с центральной циркуляционной трубой, кратность циркуляции и коэффициент теплоотдачи выше. Еще большей эффективности можно добиться, используя аппараты с вынесенной греющей камерой. В них вследствие увеличенного гидростатического столба жидкости раствор кипит не в греющих трубах, а в трубе вскипания из-за перехода в зону пониженного гидростатического давления. Таким образом, уменьшается отложение накипи на теплообменной поверхности греющих труб и увеличивается коэффициент теплопередачи.

В итоге был получен  следующий результат: выпарной аппарат  с естественной циркуляцией и  вынесенной греющей камерой общей  высотой 13 м, диаметром сепаратора 1,8 м и диаметром греющей камеры 1 м.

 

 

Библиографический список

 

  1. Дытнерский, Ю. И. Основные процессы и аппараты химической технологии. Пособие по проектированию [текст] / Ю. И. Дытнерский,  М.: Химия, 1983, 270 с.
  2. Павлов, К. Ф. Примеры и задачи по курсу процессы и аппараты химической технологии [текст] / К. Ф. Павлов, П. Г. Романков, А. А. Носков, М.: Химия, 1970, 624 с.
  3. Справочник химика, т III, М.: Химия, 1964, 1008 с.
  4. Справочник химика, т V, М.: Химия, 1968, 976 с.
  5. Воробьёва, Г. Я. Коррозионная стойкость материалов в агрессивных средах химических производств [текст] / Г. Я. Воробьёва, М.: Химия, 1975, 816 с.
  6. Касаткин, А. Г. Основные процессы и аппараты химической технологии [текст] / А. Г. Касаткин, М.: Химия, 1973, 750 с.
  7. Викторов, М. М. Методы вычисления физико-химических величин и прикладные расчёты [текст] / М. М. Викторов, Л.: Химия, 1977, 360 с.
  8. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначения. М.: ЦИНТИХИМНЕФТЕМАШ, 1979, 38 с.
  9. Лащинский, А. А. Основы конструирования и расчёта химической аппаратуры [текст] / А. А. Лащинский, А. Р. Толчинский, Л.: Машиностроение, 1970, 752 с.
  10. Лащинский, А. А. Конструирование сварочных химических аппаратов [текст] / А. А. Лащинский, Л.: Машиностроение, 1981, 382 с.

Информация о работе Выпарной аппарат