Автор работы: Пользователь скрыл имя, 11 Мая 2012 в 14:24, курсовая работа
В химической промышленности выпариванию подвергают растворы твердых веществ (главным образом водные растворы щелочей, солей и др.), а также растворы высококипящих жидкостей, обладающих при температуре выпаривания очень малым давлением пара (некоторые минеральные и органические кислоты, многоатомные спирты и др.).
Введение
3
Основные условные обозначения
8
1.
Определение поверхности теплопередачи выпарных аппаратов
10
1.1
Расчёт концентраций упариваемого раствора
10
1.2
Определение температур кипения растворов
12
1.3
Расчёт полезной разности температур
18
1.4
Определение тепловых нагрузок
19
1.5
Выбор конструкционного материала
21
1.6
Расчёт коэффициентов теплопередачи
22
1.7
Распределение полезной разности температур
29
1.8
Уточнённый расчёт поверхности теплопередачи
30
2.
Определение толщины тепловой изоляции
54
3.
Расчёт барометрического конденсатора
55
3.1
Определение расхода охлаждающей воды
55
3.2
Расчёт диаметра барометрического конденсатора
55
3.3
Расчёт высоты барометрической трубы
55
4.
Расчёт производительности вакуум-насоса
60
5.
Расчёт диаметров трубопроводов и подбор штуцеров
62
6.
Расчёт насоса для подачи исходной смеси
65
7.
Расчёт теплообменника-подогревателя
71
8.
Расчёт вспомогательного оборудования выпарной установки
77
8.1.
Расчёт конденсатоотводчиков
77
8.1.1
Расчёт конденсатоотводчиков для первого корпуса выпарной установки
77
8.1.2
Расчёт конденсатоотводчиков для второго корпуса выпарной установки
78
8.1.3
Расчёт конденсатоотводчиков для третьего корпуса выпарной установки
79
8.2
Расчёт ёмкостей
80
9.
Механические расчёты основных узлов и деталей выпарного аппарата
81
9.1
Расчёт толщины обечаек
81
9.2
Расчёт толщины днищ
83
9.3
Определение фланцевых соединений и крышек
85
9.4
Расчет аппарата на ветровую нагрузку
86
9.5
Расчёт опор аппарата
91
Заключение
95
Библиографический список
97
Приложения
98
К – коэффициент теплопередачи, Вт/(м2 ∙ К);
Р – давление, Мпа;
Q – тепловая нагрузка, кВт;
q – удельная тепловая нагрузка, Вт/м2;
r – теплота парообразования, кДж/кг;
T, t – температура, град;
W, w – производительность по испаряемой воде, кг/с;
x – концентрация, % (масс.);
α – коэффициент теплоотдачи, Вт/(м2 ∙ К);
ρ – плотность, кг/м3;
μ – вязкость, Па ∙ с;
λ – теплопроводность, Вт/(м ∙ К);
σ – поверхностное натяжение, Н/м;
Re – критерий Рейнольдса;
Nu – критерий Нуссельта;
Pr – критерий Прандтля.
Индексы:
1, 2, 3 – первый, второй, третий корпус выпарной установки;
в – вода;
вп – вторичный пар;
г – греющий пар;
ж – жидкая фаза;
к – конечный параметр;
н – начальный параметр4
ср – средняя величина;
ст – стенка.
1. Определение
поверхности теплопередачи
Поверхность теплопередачи каждого корпуса выпарной установки определяют по основному уравнению теплопередачи, м2:
(1)
Для определения тепловых нагрузок Q, коэффициентов теплопередачи К и полезных разностей температур Δtп необходимо знать распределение упариваемой воды, концентраций растворов и их температур кипения по корпусам. Эти величины находят методом последовательных приближений.
Первое приближение.
Производительность установки по выпариваемой воде определяют из уравнения материального баланса:
(2)
где – расход упариваемого раствора, кг/с; начальная концентрация раствора, % (масс.); конечная концентрация раствора, % (масс.).
Подставив, получим:
кг/с.
1.1 Расчёт концентраций упариваемого раствора
Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением:
где производительность по испаряемой воде в первом корпусе, кг/с; производительность по испаряемой воде во втором корпусе, кг/с; производительность по испаряемой воде в третьем корпусе, кг/с;
Тогда
кг/с,
кг/с,
кг/с.
Далее рассчитывают концентрации растворов в корпусах:
(7,9 %),
(12,24 %),
(30%).
Концентрация раствора в последнем корпусе х3 соответствует заданной концентрации упаренного раствора хк.
1.2 Определение температур кипения растворов
Общий перепад давлений в установке равен, МПа:
(3)
где давление греющего пара в первом корпусе, МПа; давление греющего пара в барометрическом конденсаторе, МПа.
Подставив, получим, МПа:
В первом приближении общий перепад давлений распределяют между корпусами поровну. Тогда давления греющих паров в корпусах (в МПа) равны:
РГ1 = 0,4
Давление пара в барометрическом конденсаторе:
Что соответствует заданной величине РБК.
По давлениям паров находим их температуры и энтальпии [2]:
Давление, Мпа |
Температура, °С |
Энтальпия, кДж/кг |
Рг1 = 0,4 |
tг1 = 143,5 |
I1 = 2739,6 |
Рг2 = 0,277 |
tг2 = 131 |
I2 = 2722 |
Рг3 = 0,153 |
tг3 = 112,1 |
I3 = 2708,4 |
Рбк = 0,03 |
tбк = 69 |
Iбк = 2623,4 |
При определении температуры
кипения растворов в аппаратах
исходят из следующих допущений.
Распределение концентраций раствора
в выпарном аппарате с интенсивной
циркуляцией практически
Изменение температуры кипения
по высоте кипятильных труб происходит
вследствие изменения гидростатического
давления столба жидкости. Температуру
кипения раствора в корпусе принимают
соответствующей температуре
Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчётах принимают Δ”’ = 1,0 – 1,5 град на корпус. Примем для каждого корпуса Δ”’ = 1 град. Тогда температуры вторичных паров в корпусах (в °С) равны:
°С
°С
°С
Сумма гидродинамических депрессий:
°С
По температурам вторичных паров определим их давления [2]:
Температура, °С |
Давление, МПа |
tвп1 = 132 |
Рвп1 = 0,2866 |
tвп2 = 113,1 |
Рвп2 = 0,1579 |
tвп3 = 70 |
Рвп3 = 0,0312 |